×

zbMATH — the first resource for mathematics

Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows. (English) Zbl 1451.76073
Summary: In this work, we consider the discretization of nonlinear hyperbolic systems in nonconservative form with the high-order discontinuous Galerkin spectral element method (DGSEM) based on collocation of quadrature and interpolation points [D. A. Kopriva and G. Gassner, J. Sci. Comput. 44, No. 2, 136–155 (2010; Zbl 1203.65199)]. We present a general framework for the design of such schemes that satisfy a semi-discrete entropy inequality for a given convex entropy function at any approximation order. The framework is closely related to the one introduced for conservation laws by T. C. Fisher and M. H. Carpenter [J. Comput. Phys. 252, 518–557 (2013; Zbl 1349.65293)] and G. J. Gassner [SIAM J. Sci. Comput. 35, No. 3, A1233–A1253 (2013; Zbl 1275.65065)] and relies on the modification of the integral over discretization elements where we replace the physical fluxes by entropy conservative numerical fluxes from [M. J. Castro et al., SIAM J. Numer. Anal. 51, No. 3, 1371–1391 (2013; Zbl 1317.65167)], while entropy stable numerical fluxes are used at element interfaces. Time discretization is performed with strong-stability preserving Runge-Kutta schemes. The present method is first validated on the Burgers and Euler equations in nonconservative form. We then use this framework for the discretization of two-phase flow systems in one space-dimension: a \(2 \times 2\) system with a nonconservative product associated to a linearly-degenerate field for which the DGSEM fails to capture the physically relevant solution, and the isentropic Baer-Nunziato model. For the latter, we derive conditions on the numerical parameters of the discrete scheme to further keep positivity of the partial densities and a maximum principle on the void fractions. Numerical experiments support the conclusions of the present analysis and highlight stability and robustness of the present schemes.
MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76T10 Liquid-gas two-phase flows, bubbly flows
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L45 Initial value problems for first-order hyperbolic systems
Software:
HLLC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 150-160 (1996) · Zbl 0847.76060
[2] Abgrall, R., A general framework to construct schemes satisfying additional conservation relations: application to entropy conservative and entropy dissipative schemes (2018)
[3] Abgrall, R.; le Mélédo, E.; Öffner, P., On the connection between residual distribution schemes and flux reconstruction (2018), preprint
[4] Abgrall, R.; Karni, S., A comment on the computation of non-conservative products, J. Comput. Phys., 45, 382-403 (2010)
[5] Abgrall, R.; Kumar, H., Numerical approximation of a compressible multiphase system, Commun. Comput. Phys., 15, 1237-1265 (2014) · Zbl 1373.76154
[6] Ambroso, A.; Chalons, C.; Coquel, F.; Galié, T.; Godlewski, E.; Raviart, P.-A.; Seguin, N., The drift-flux asymptotic limit of barotropic two-phase two-pressure models, Commun. Math. Sci., 6, 521-529 (2008) · Zbl 1141.76065
[7] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, 12, 861-889 (1986) · Zbl 0609.76114
[8] Berthon, C., Nonlinear scheme for approximating a non-conservative hyperbolic system, C. R. Math. Acad. Sci. Paris, 335, 1069-1072 (2002) · Zbl 1018.65107
[9] Berthon, C.; Coquel, F.; LeFloch, P. G., Why many theories of shock waves are necessary: kinetic relations for non-conservative systems, Proc. R. Soc. Edinb., 142, 1-37 (2012) · Zbl 1234.35190
[10] Bohm, M.; Winters, A. R.; Gassner, G. J.; Derigs, D.; Hindenlang, F.; Saur, J., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations, part I: theory and numerical verification, J. Comput. Phys. (2019), in press
[11] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, B835-B867 (2014) · Zbl 1457.65140
[12] Castro, M. J.; Fjordholm, U. S.; Mishra, S.; Parès, C., Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems, SIAM J. Numer. Anal., 51, 1371-1391 (2013) · Zbl 1317.65167
[13] Castro, M. J.; LeFloch, P. G.; Munõz-Ruiz, M. L.; Parès, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 227, 8107-8129 (2008) · Zbl 1176.76084
[14] Chalons, Ch.; Coquel, F., A new comment on the computation of non-conservative products using Roe-type path conservative schemes, J. Comput. Phys., 335, 592-604 (2017) · Zbl 1375.76161
[15] Chandrashekar, P.; Klingenberg, C., Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes, SIAM J. Numer. Anal., 54, 1313-1340 (2016) · Zbl 1381.76213
[16] Chen, T.; Shu, C.-W., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253
[17] Coquel, F.; Gallouët, T.; Hérard, J.-M.; Seguin, N., Closure laws for a two-fluid two-pressure model, C. R. Acad. Sci. Paris, 334, 927-932 (2002) · Zbl 0999.35057
[18] Coquel, F.; Hérard, J.-M.; Saleh, K.; Seguin, N., A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model, ESAIM: Math. Model. and Numer. Analysis (M2AN), 48, 165-206 (2013) · Zbl 1286.76098
[19] Coquel, F.; Marmignon, C.; Rai, P.; Renac, F., Adjoint approximation of nonlinear hyperbolic systems with non-conservative products, (XVII International Conference on Hyperbolic Problems, Theory, Numerics, Applications, University Park, USA (2018))
[20] Dal Maso, G.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548 (1995) · Zbl 0853.35068
[21] Després, B., Entropy inequality for high order discontinuous Galerkin approximation of Euler equations, (VII Conference on Hyperbolic Problems (1998), ETHZ-Zurich)
[22] Després, B., Discontinuous Galerkin method for the numerical solution of Euler equations in axisymmetric geometry, (Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods: Theory, Computation and Applications. Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11 (2000), Springer-Verlag), 315-320 · Zbl 1041.76553
[23] Dumbser, M.; Boscheri, W., High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows, Comput. Fluids, 86, 405-432 (2013) · Zbl 1290.76081
[24] Dumbser, M.; Casulli, V., A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations, Appl. Math. Comput., 219, 8057-8077 (2013) · Zbl 1366.76050
[25] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647 (2010) · Zbl 1227.76043
[26] Dumbser, M.; Loubère, R., A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J. Comput. Phys., 319, 163-199 (2016) · Zbl 1349.65447
[27] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[28] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 544-573 (2012) · Zbl 1252.65150
[29] Franquet, E.; Perrier, V., Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, J. Comput. Phys., 231, 4096-4141 (2012) · Zbl 1426.76530
[30] Franquet, E.; Perrier, V., Runge-Kutta discontinuous Galerkin method for reactive multiphase flows, Comput. Fluids, 83, 157-163 (2013) · Zbl 1290.76159
[31] Fraysse, F.; Redondo, C.; Rubio, G.; Valero, E., Upwind methods for the Baer-Nunziato equations and higher-order reconstruction using artificial viscosity, J. Comput. Phys., 326, 805-827 (2016) · Zbl 1373.76320
[32] Gassner, G. J., A Skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, A1233-A1253 (2013) · Zbl 1275.65065
[33] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272, 291-308 (2016)
[34] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[35] Hiltebrand, A.; Mishra, S., Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws, Numer. Math., 126, 103-151 (2014) · Zbl 1303.65083
[36] Henry de Frahan, M. T.; Varadan, S.; Johnsen, E., A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces, J. Comput. Phys., 280, 89-509 (2015) · Zbl 1349.76220
[37] Ismail, F.; Roe, P. L., Affordable, entropy-consistent Euler flux functions, II: entropy production at shocks, J. Comput. Phys., 228, 5410-5436 (2009) · Zbl 1280.76015
[38] Jiang, G.; Shu, C. W., On a cell entropy inequality for discontinuous Galerkin methods, Math. Comput., 62, 531-538 (1994) · Zbl 0801.65098
[39] Kopriva, D. A.; Gassner, G., On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, J. Sci. Comput., 44, 136-155 (2010) · Zbl 1203.65199
[40] Le Floch, Ph., Shock waves for nonlinear hyperbolic systems in nonconservative form, Inst. of Math, and Its Applications (October 1989), Univ. of Minnesota: Univ. of Minnesota Minneapolis, Preprint 593
[41] Liu, Y.; Shu, C.-W.; Zhang, M., Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes, J. Comput. Phys., 354, 163-178 (2018) · Zbl 1380.76162
[42] Munkejord, S. T., Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation, Comput. Fluids, 36, 1061-1080 (2007) · Zbl 1194.76161
[43] Parès, C., Numerical methods for non-conservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[44] Perthame, B.; Shu, C.-W., On positivity preserving finite volume schemes for Euler equations, Numer. Math., 73, 119-130 (1996) · Zbl 0857.76062
[45] Ranocha, H., Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods, GEM-Int. J. Geomath., 8, 85-133 (2017) · Zbl 1432.65156
[46] Renac, F., A robust high-order Lagrange-projection like scheme with large time steps for the isentropic Euler equations, Numer. Math., 135, 493-519 (2017) · Zbl 1381.76198
[47] Renac, F., A robust high-order discontinuous Galerkin method with large time steps for the compressible Euler equations, Commun. Math. Sci., 15, 813-837 (2017) · Zbl 1457.65134
[48] Rhebergen, S.; Bokhove, O.; van der Vegt, J. J.W., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., 227, 1887-1922 (2008) · Zbl 1153.65097
[49] Sainsaulieu, L., Ondes progressives solutions de systèmes convectifs-diffusifs et systèmes hyperboliques non conservatifs, C. R. Math. Acad. Sci. Paris, 312, 491-494 (1991) · Zbl 0717.76118
[50] Serre, D., Domaines invariants pour les systèmes hyperboliques de lois de conservation, J. Differential Equations, 69, 46-62 (1987) · Zbl 0626.35061
[51] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[52] Stewart, H. B.; Wendroff, B., Two-phase flow: models and methods, J. Comput. Phys., 56, 363-409 (1984) · Zbl 0596.76103
[53] Tadmor, E., Skew-selfadjoint form for systems of conservation law, J. Math. Anal. Appl., 103, 428-442 (1984) · Zbl 0599.35102
[54] Tadmor, E., A minimum entropy principle in the gas dynamics equations, Appl. Numer. Math., 2, 211-219 (1986) · Zbl 0625.76084
[55] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., 49, 91-103 (1987) · Zbl 0641.65068
[56] Tassi, P. A.; Rhebergen, S.; Vionnet, C. A.; Bokhove, O., A discontinuous Galerkin finite element model for river bed evolution under shallow flows, Comput. Methods Appl. Mech. Engrg., 197, 2930-2947 (2008) · Zbl 1194.76143
[57] Tokareva, S. A.; Toro, E. F., HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys., 229, 3573-3604 (2010) · Zbl 1391.76440
[58] Tokareva, S. A.; Toro, E. F., A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys., 323, 45-74 (2016)
[59] Toumi, I., A weak formulation of Roe’s approximate Riemann solver, J. Comput. Phys., 102, 360-373 (1992) · Zbl 0783.65068
[60] Volpert, A. L., The space BV and quasilinear equations, Math. USSR Sbornik, 73, 225-267 (1967)
[61] Zhang, X.; Shu, C.-W., On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys., 229, 3091-3120 (2010) · Zbl 1187.65096
[62] Zhang, X.; Shu, C.-W., On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 8918-8934 (2010) · Zbl 1282.76128
[63] van Zwieten, J. S.B.; Sanderse, B.; Hendrix, M. H.W.; Vuik, C.; Henkes, R. A.W. M., Efficient simulation of one-dimensional two-phase flow with a high-order h-adaptive space-time discontinuous Galerkin method, Comput. Fluids, 156, 34-47 (2017) · Zbl 1390.76388
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.