×

zbMATH — the first resource for mathematics

Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces. (English) Zbl 1193.54035
Summary: In the first part of this paper, we generalize results on common fixed points in ordered cone metric spaces obtained by I. Altun and G. Durmaz [Rend. Circ. Mat. Palermo (2) 58, No. 2, 319–325 (2009; Zbl 1184.54038)] and I. Altun, B. Damnjanović and D. Djorić [Appl. Math. Lett. 23, No. 3, 310–316 (2010; Zbl 1197.54052)] by weakening the respective contractive condition. Then, the notions of quasicontraction and \(g\)-quasicontraction are introduced in the setting of ordered cone metric spaces and respective (common) fixed point theorems are proved. In such a way, known results on quasicontractions and \(g\)-quasicontractions in metric spaces and cone metric spaces are extended to the setting of ordered cone metric spaces. Examples show that there are cases when new results can be applied, while old ones cannot.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
65J15 Numerical solutions to equations with nonlinear operators (do not use 65Hxx)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kantorovich, L.V., The majorant principle and newton’s method, Dokl. akad. nauk SSSR (N.S.), 76, 17-20, (1951)
[2] Vandergraft, J.S., Newton method for convex operators in partially ordered spaces, SIAM J. numer. anal., 4, 3, 406-432, (1967) · Zbl 0161.35302
[3] Zabreĭko, P.P., \(K\)-metric and \(K\)-normed spaces: survey, Collect. math., 48, 4-6, 825-859, (1997) · Zbl 0892.46002
[4] Deimling, K., Nonlinear functional analysis, (1985), Springer-Verlag · Zbl 0559.47040
[5] Huang, L.G.; Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, J. math. anal. appl., 332, 2, 1468-1476, (2007) · Zbl 1118.54022
[6] Ran, A.C.M.; Reurings, M.C.B., A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. amer. math. soc., 132, 1435-1443, (2004) · Zbl 1060.47056
[7] Nieto, J.J.; Lopez, R.R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 223-239, (2005) · Zbl 1095.47013
[8] Ćirić, Lj.; Cakić, N.; Rajović, M.; Ume, J.S., Monotone generalized nonlinear contractions in partially oredered metric spaces, Fixed point theory appl., (2008), 11 pages. Article ID 131294 · Zbl 1158.54019
[9] O’Regan, D.; Petrusel, A., Fixed point theorems for generalized contractions in ordered metric spaces, J. math. anal. appl., 341, 1241-1252, (2008) · Zbl 1142.47033
[10] Beg, I.; Rashid Butt, A., Fixed point for set-valued mappings satisfying an implicit relation in partiall ordered metric spaces, Nonlinear anal., 71, 3699-3704, (2009) · Zbl 1176.54028
[11] Harjani, J.; Sadarangani, K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear anal., 71, 3402-3410, (2009) · Zbl 1221.54058
[12] Agarwal, R.P.; El-Gebeily, M.A.; O’Regan, D., Generalized contractions in partially ordered metric spaces, Appl. anal., 87, 109-116, (2008) · Zbl 1140.47042
[13] Grana Bhaskar, T.; Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear anal., 65, 1379-1393, (2006) · Zbl 1106.47047
[14] Lakshmikantham, V.; Ćirić, Lj., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear anal., (2008)
[15] Altun, I.; Durmaz, G., Some fixed point theorems on ordered cone metric spaces, Rend. circ. mat. Palermo, 58, 319-325, (2009) · Zbl 1184.54038
[16] Altun, I.; Damnjanović, B.; Djorić, D., Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. math. lett., (2009)
[17] Abbas, M.; Rhoades, B.E., Fixed and periodic point results in cone metric spaces, Appl. math. lett., 21, 511-515, (2008) · Zbl 1167.54014
[18] Ćirić, Lj.B., A generalization of banach’s contraction principle, Proc. amer. math. soc., 45, 267-273, (1974) · Zbl 0291.54056
[19] Das, K.M.; Naik, K.V., Common fixed point theorems for commuting maps on metric spaces, Proc. amer. math. soc., 77, 369-373, (1979) · Zbl 0418.54025
[20] Ilić, D.; Rakočević, V., Quasi-contraction on a cone metric space, Appl. math. lett., 22, 728-731, (2009) · Zbl 1179.54060
[21] Kadelburg, Z.; Radenović, S.; Rakočević, V., Remarks on quasi-contraction on a cone metric space, Appl. math. lett., 22, 1674-1679, (2009) · Zbl 1180.54056
[22] Pathak, H.K.; Shahzad, N., Fixed point results for generalized quasicontraction mappings in abstract metric spaces, Nonlinear anal., 71, 6068-6076, (2009) · Zbl 1189.54036
[23] S. Radenović, Z. Kadelburg, Common fixed points of generalized quasicontractions in abstract metric spaces (submitted for publication).
[24] Azam, A.; Arshad, M.; Beg, I., Existence of fixed points in complete cone metric spaces, Int. J. mod. math., 4, x, (2009)
[25] Lj.B. Ćirić, Fixed point theory contraction mapping principle, Faculty of Mechanical Engineering, Beograd, 2003.
[26] Jungck, G., Commuting mappings and fixed points, Amer. math. monthly, 83, 261-263, (1976) · Zbl 0321.54025
[27] Jungck, G., Compatible mappings and common fixed points, Int. J. math. sci., 9, 771-779, (1986) · Zbl 0613.54029
[28] Abbas, M.; Jungck, G., Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. math. anal. appl., 341, 416-420, (2008) · Zbl 1147.54022
[29] Rhoades, B.E., A comparison of various definitions of contractive mappings, Trans. amer. math. soc., 336, 257-290, (1977) · Zbl 0365.54023
[30] G. Jungck, S. Radenović, S. Radojević, V. Rakočević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. doi:10.1155/2009/643840. · Zbl 1190.54032
[31] S. Janković, Z. Kadelburg, S. Radenović, B.E. Rhoades, Asad-Kirk-type fixed point theorems for a pair of non-eslf mappings on cone metric spaces, Fixed Point Theory Appl. doi:10.1155/2009/761086.
[32] Z. Kadelburg, S. Radenović, B. Rosić, Strict contractive conditions and common fixed point theorems in cone metric spaces, Fixed Point Theory Appl. doi:10.1155/2009/173838.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.