×

zbMATH — the first resource for mathematics

High-Reynolds-number wall-modelled large eddy simulations of turbulent pipe flows using explicit and implicit subgrid stress treatments within a spectral element solver. (English) Zbl 07124552
Summary: We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by A. Misra and the last author [Phys. Fluids 9, No. 8, 2443–2454 (1997; Zbl 1185.76770)] and D. Chung and the last author [J. Fluid Mech. 631, 281–309 (2009; Zbl 1181.76088)]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at \(\mathrm{Re}_\tau = 2 \times 10^3\) and \(\mathrm{Re}_\tau = 1.8 \times 10^5\) in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls.
MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahn, J.; Lee, J. H.; Lee, J.; Kang, J.; Sung, H. J., Direct numerical simulation of a 30r long turbulent pipe flow at \(R e_\tau = 3008\), Phys Fluids, 27, 6, 065110 (2015)
[2] Asthana, K.; Jameson, A., High-order flux reconstruction schemes with minimal dispersion and dissipation, J Scientif Comput, 62, 3, 913-944 (2015) · Zbl 1329.65217
[3] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F.; Munz, C. D., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int J Numer MethodsFluids, 76, 8, 522-548 (2014)
[4] Berrouk, A. S.; Laurence, D.; Riley, J. J.; Stock, D. E., Stochastic modelling of inertial particle dispersion by subgrid motion for les of high Reynolds number pipe flow, J Turbulence, 8, 1-20 (2007)
[5] Blackburn, H. M.; Sherwin, S. J., Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries, J Comput Phys, 197, 2, 759-778 (2004) · Zbl 1106.76418
[6] Boris, J. P.; Grinstein, F. F.; Oran, E. S.; Kolbe, R. L., New insights into large eddy simulation, Fluid Dyn Res, 10, 4-6, 199 (1992)
[7] Bose, S. T.; Park, G. I., Wall-modeled large-eddy simulation for complex turbulent flows, Annu Rev Fluid Mech, 50, 1, 535-561 (2018) · Zbl 1384.76028
[8] Brun, C.; Friedrich, R.; Silva, C. B.d., A non-linear SGS model based on the spatial velocity increment, Theoret Comput Fluid Dyn, 20, 1, 1-21 (2006)
[9] Cheng, W.; Pullin, D. I.; Samtaney, R., Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer, J Fluid Mech, 785, 78-108 (2015) · Zbl 1381.76124
[10] Cheng, W.; Pullin, D. I.; Samtaney, R.; Zhang, W.; Gao, W., Large-eddy simulation of flow over a cylinder with \(re_D\) from 3.9 × \(10^3\) to 8.5 × \(10^5\) : a skin-friction perspective, J Fluid Mech, 820, 121-158 (2017) · Zbl 1383.76280
[11] Chin, C.; Monty, J. P.; Ooi, A., Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers, Int J Heat Fluid Flow, 45, 33-40 (2014)
[12] Chin, C.; Ng, H. C.H.; Blackburn, H. M.; Monty, J. P.; Ooi, A., Turbulent pipe flow at \(R e_\tau = 1000\) : a comparison of wall-resolved large-eddy simulation, direct numerical simulation and hot-wire experiment, Comput Fluids, 122, 26-33 (2015)
[13] Chin, C.; Ooi, A. S.H.; Marusic, I.; Blackburn, H. M., The influence of pipe length on turbulence statistics computed from direct numerical simulation data, Phys Fluids, 22, 11, 115107 (2010)
[14] Chung, D.; Pullin, D. I., Large-eddy simulation and wall modelling of turbulent channel flow, J Fluid Mech, 631, 281-309 (2009) · Zbl 1181.76088
[15] Nieuwstadt, F. T.M.; den Toonder, J. M.J., Reynolds number effects in a turbulent pipe flow for low to moderate Re, Phys Fluids, 9, 11, 3398-3409 (1997)
[16] Durbin, P. A., Some recent developments in turbulence closure modeling, Annu Rev Fluid Mech, 50, 1, 77-103 (2018) · Zbl 1384.76027
[17] Ferrer, E., An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large eddy simulations, J Comput Phys, 348, 754-775 (2017) · Zbl 1380.76018
[18] Flad, D.; Gassner, G., On the use of kinetic energy preserving DG-schemes for large eddy simulation, J Comput Phys, 350, 782-795 (2017) · Zbl 1380.76019
[19] Gassner, G. J., An analysis of the dissipation and dispersion errors of the Pn-Pm schemes, J Scientif Comput, 54, 1, 21-44 (2013) · Zbl 1259.65148
[20] Grinstein, F. F.; Margolin, L. G.; Rider, W. J., Implicit large eddy simulation: computing turbulent fluid dynamics (2007), Cambridge Univ. Press: Cambridge Univ. Press Leiden · Zbl 1135.76001
[21] Guala, M.; Hommema, S. E.; Adrian, R. J., Large-scale and very-large-scale motions in turbulent pipe flow, J Fluid Mech, 554, 521-542 (2006) · Zbl 1156.76316
[22] Hüttl, T. J., Direct numerical simulation of turbulent flows in curved and helically coiled pipes, Comput Fluids, 30, 5, 591-605 (2001) · Zbl 0990.76030
[23] Härtel, C.; Kleiser, L.; Unger, F.; Friedrich, R., Subgrid scale energy transfer in the near wall region of turbulent flows, Phys Fluids, 6, 9, 3130-3143 (1994) · Zbl 0825.76326
[24] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods – algorithms, analysis, and applications (2008), Springer · Zbl 1134.65068
[25] Hultmark, M.; Vallikivi, M.; Bailey, S.; Smits, A. J., Turbulent pipe flow at extreme Reynolds numbers, Phys Rev Lett (2012)
[26] Inoue, M.; Mathis, R.; Marusic, I.; Pullin, D. I., Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations, Phys Fluids, 24, 7, 075102 (2012)
[27] Inoue, M.; Pullin, D. I., Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Re = O(1012), J Fluid Mech, 686, 507-C533 (2011) · Zbl 1241.76279
[28] Inoue, M.; Pullin, D. I.; Harun, Z.; Marusic, I., LES of the adverse-pressure gradient turbulent boundary layer, Int J Heat Fluid Flow, 44, Supplement C, 293-300 (2013)
[29] Karamanos, G. S., Large eddy simulation using unstructured spectral h/p elements (1999), Imperial College: Imperial College London, PhD thesis · Zbl 0948.76562
[30] Karamanos, G. S.; Karniadakis, G. E., A spectral vanishing viscosity method for large eddy simulations, J Comput Phys, 163, 1, 22-50 (2000) · Zbl 0984.76036
[31] Karamanos, G. S.; Sherwin, S. J., A high order splitting scheme for the Navier-Stokes equations with variable viscosity, Appl Numer Math, 33, 1-4, 455-462 (2000) · Zbl 0993.76055
[32] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., High-order splitting methods for incompressible Navier-Stokes equations, J Comput Phys, 97, 414-443 (1991) · Zbl 0738.76050
[33] Kim, K. C.; Adrian, R. J., Very large-scale motion in the outer layer, Phys Fluids, 11, 417-422 (1999) · Zbl 1147.76430
[34] Kirby, R. M.; Sherwin, S. J., Stabilisation of spectral h/p element methods through spectral vanishing viscosity: application to fluid mechanics modelling, Comput Methods Appl MechEng, 195, 23-24, 3128-3144 (2006) · Zbl 1115.76060
[35] Kirby, R. M.; Karniadakis, G. E., Coarse resolution turbulence simulations with spectral vanishing viscosity–large eddy simulations (SVV-LES), J Fluids Eng, 124, 4, 886-891 (2002)
[36] Klewicki, J.; Chin, C.; Blackburn, H. M.; Ooi, A.; Marusic, I., Emergence of the four layer dynamical regime in turbulent pipe flow, Phys Fluids, 24, 4, 045107 (2012)
[37] Koal, K.; Stiller, J.; Blackburn, H. M., Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations, J Comput Phys, 231, 8, 3389-3405 (2012) · Zbl 1402.76061
[38] Larsson, J.; Kawai, S.; Bodart, J.; Bermejo-Moreno, I., Large eddy simulation with modeled wall-stress: recent progress and future directions, Mech Eng Rev, 3, 1 (2016)
[39] Lee, J. H.; Sung, H. J., Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations, Phys Fluids, 25, 4, 045103 (2013)
[40] Lundgren, T. S., Strained spiral vortex model for turbulent fine structure, Phys Fluids, 25, 12, 2193-2203 (1982) · Zbl 0536.76034
[41] Maday, Y.; Ould Kaber, S. M.; Tadmor, E., Legendre pseudospectral viscosity method for nonlinear conservation laws, SIAM J Numer Anal, 30, 2, 321-342 (1993) · Zbl 0774.65072
[42] Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., On the role of numerical dissipation in stabilising under-resolved turbulent simulations using discontinuous Galerkin methods, arXiv:180510519 (2018)
[43] McKeon, B. J.; Li, J.; Jiang, W.; Morrison, J. F.; Smits, A. J., Further observations on the mean velocity distribution in fully developed pipe flow, J Fluid Mech, 501, 135-147 (2004) · Zbl 1067.76513
[44] McKeon, B. J.; Swanson, C. J.; Zagarola, M. V.; Donnelly, R. J.; Smits, A. J., Friction factors for smooth pipe flow, J Fluid Mech, 511, 41-44 (2004) · Zbl 1061.76503
[45] Misra, A.; Pullin, D. I., A vortex-based subgrid stress model for large-eddy simulation, Phys Fluids, 9, 8, 2443-2454 (1997) · Zbl 1185.76770
[46] Monty, J. P.; Stewart, J. A.; Williams, R. C.; Chong, M. S., Large-scale features in turbulent pipe and channel flows, J Fluid Mech, 589, 147-156 (2007) · Zbl 1141.76316
[47] Moura, R. C.; Sherwin, S. J.; Peiro, J., Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods, J Comput Phys, 298, 695-710 (2015) · Zbl 1349.76131
[48] Ng, H. C.H.; Monty, J. P.; Hutchins, N.; Chong, M. S.; Marusic, I., Comparison of turbulent channel and pipe flows with varying Reynolds number, Exp Fluids, 51, 5, 1261-1281 (2011)
[49] Pasquetti, R., Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters, J Turbulence, 6 (2005)
[50] Piomelli, U., Wall-layer models for large-eddy simulations, Prog Aerospace Sci, 44, 6, 437-446 (2008)
[51] Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulations, Annu Rev Fluid Mech, 34, 349-374 (2002) · Zbl 1006.76041
[52] Pullin, D. I.; Saffman, P. G., Vortex dynamics in turbulence, Annu Rev Fluid Mech, 30, 31-51 (1998) · Zbl 1398.76084
[53] Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philos Trans R Soc, 174, 935-982 (1883) · JFM 16.0845.02
[54] Sagaut, P., Large eddy simulation for incompressible flows: an introduction, Scientific computation (2001), Springer · Zbl 0964.76002
[55] Saito, N., Large-eddy simulations of fully developed turbulent channel and pipe flows with smooth and rough walls (2014), California Institute of Technology, Phd thesis
[56] Saito, N.; Pullin, D. I., Large eddy simulation of smooth-rough-smooth transitions in turbulent channel flows, Int J Heat Mass Transf, 78, 707-720 (2014)
[57] Saito, N.; Pullin, D. I.; Inoue, M., Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow, Phys Fluids, 24, 7, 075103 (2012)
[58] Sherwin, S. J., Dispersion analysis of the continuous and discontinuous Galerkin formulations, in International Symposium on Discontinuous Galerkin Methods, 425-431 (1999), Springer · Zbl 0946.65084
[59] Smits, A. J.; McKeon, B. J.; Marusic, I., High-Reynolds number wall turbulence, Annu Rev Fluid Mech, 43 (2011) · Zbl 1299.76002
[60] Spalart, P. R., Detached-eddy simulation, Annu. Rev. Fluid Mech, 41, 1, 181-202 (2009) · Zbl 1159.76036
[61] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J Numer Anal, 26, 30-44 (1989) · Zbl 0667.65079
[62] Thomas, A. Z., On the rotation and skew-symmetric forms for incompressible flow simulations, Appl Numer Math, 7, 1, 27-40 (1991) · Zbl 0708.76071
[63] Wu, X.; Moin, P., A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow, J Fluid Mech, 608, 81-112 (2008) · Zbl 1145.76393
[64] Xu, C.; Pasquetti, R., Stabilized spectral element computations of high Reynolds number incompressible flows, J Comput Phys, 196, 2, 680-704 (2004) · Zbl 1109.76342
[65] Zagarola, M. V.; Smits, A. J., Mean-flow scaling of turbulent pipe flow, J Fluid Mech, 373, 33-79 (1998) · Zbl 0941.76510
[66] Zhao, R.; Smits, A. J., Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow, J Fluid Mech, 576 (2007) · Zbl 1178.76058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.