×

zbMATH — the first resource for mathematics

Pressure gradient effects on the large-scale structure of turbulent boundary layers. (English) Zbl 1284.76203
Summary: Research into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number [M. M. Metzger and J. C. Klewicki, Phys. Fluids 13, No. 3, 692–701 (2001); N. Hutchins and I. Marusic, J. Fluid Mech. 579, 1–28 (2007; Zbl 1113.76004)], but also when a boundary layer is exposed to an adverse pressure gradient [P. Bradshaw, J. Fluid Mech. 29, 625–645 (1967); J.-H. Lee and H. J. Sung, J. Fluid Mech. 639, 101–131 (2009: Zbl 1183.76767)]. The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.

MSC:
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112061000883 · Zbl 0127.42602 · doi:10.1017/S0022112061000883
[2] DOI: 10.1063/1.868513 · doi:10.1063/1.868513
[3] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[4] DOI: 10.1017/S0022112067001740 · doi:10.1017/S0022112067001740
[5] DOI: 10.1017/S002211209300120X · doi:10.1017/S002211209300120X
[6] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[7] Eur. J. Mech. B Fluids 16 pp 169– (1997)
[8] DOI: 10.1017/S0022112072002903 · doi:10.1017/S0022112072002903
[9] DOI: 10.1017/S0022112094004489 · doi:10.1017/S0022112094004489
[10] DOI: 10.1023/A:1009934906108 · Zbl 0949.76044 · doi:10.1023/A:1009934906108
[11] DOI: 10.1017/S0022112000002597 · Zbl 0963.76544 · doi:10.1017/S0022112000002597
[12] DOI: 10.1017/S0022112009007721 · Zbl 1183.76025 · doi:10.1017/S0022112009007721
[13] J. Fluid Mech. 471 pp 107– (2002)
[14] DOI: 10.1098/rsta.2006.1942 · Zbl 1152.76421 · doi:10.1098/rsta.2006.1942
[15] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[16] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[17] DOI: 10.1017/S0022112071001605 · doi:10.1017/S0022112071001605
[18] DOI: 10.1017/S0022112006000292 · Zbl 1122.76305 · doi:10.1017/S0022112006000292
[19] DOI: 10.1016/j.expthermflusci.2011.07.009 · doi:10.1016/j.expthermflusci.2011.07.009
[20] DOI: 10.1017/S0022112008003492 · Zbl 1175.76003 · doi:10.1017/S0022112008003492
[21] DOI: 10.1017/S0022112005004143 · Zbl 1125.76302 · doi:10.1017/S0022112005004143
[22] DOI: 10.1017/S0022112008003352 · Zbl 1155.76031 · doi:10.1017/S0022112008003352
[23] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[24] DOI: 10.1017/S0022112090002117 · doi:10.1017/S0022112090002117
[25] DOI: 10.1016/S0142-727X(98)10013-9 · doi:10.1016/S0142-727X(98)10013-9
[26] DOI: 10.1017/S0022112009991029 · Zbl 1183.76761 · doi:10.1017/S0022112009991029
[27] DOI: 10.1017/S0022112000001713 · Zbl 0958.76509 · doi:10.1017/S0022112000001713
[28] Proceedings of Turbulent Shear Flows 8 pp 7– (1992)
[29] DOI: 10.1017/S0022112006000607 · Zbl 1095.76021 · doi:10.1017/S0022112006000607
[30] DOI: 10.1017/S0022112010002995 · Zbl 1205.76146 · doi:10.1017/S0022112010002995
[31] DOI: 10.1017/S0022112098009987 · Zbl 0974.76035 · doi:10.1017/S0022112098009987
[32] DOI: 10.1063/1.1570830 · Zbl 1186.76136 · doi:10.1063/1.1570830
[33] Meas. Sci. Technol. 21 pp 105405, 1– (2010)
[34] J. Fluid Mech. 589 pp 147– (2007)
[35] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[36] DOI: 10.1017/S0022112067001089 · doi:10.1017/S0022112067001089
[37] DOI: 10.1017/S0022112009007423 · Zbl 1183.76036 · doi:10.1017/S0022112009007423
[38] DOI: 10.1063/1.2717527 · Zbl 1146.76307 · doi:10.1063/1.2717527
[39] DOI: 10.1017/S0022112067001417 · doi:10.1017/S0022112067001417
[40] DOI: 10.1016/j.ijheatfluidflow.2011.03.004 · doi:10.1016/j.ijheatfluidflow.2011.03.004
[41] DOI: 10.1115/1.1789528 · doi:10.1115/1.1789528
[42] DOI: 10.1017/S0022112009007289 · Zbl 1183.76010 · doi:10.1017/S0022112009007289
[43] DOI: 10.1063/1.1344894 · Zbl 1184.76364 · doi:10.1063/1.1344894
[44] DOI: 10.1063/1.864901 · doi:10.1063/1.864901
[45] DOI: 10.1063/1.3267726 · Zbl 1183.76346 · doi:10.1063/1.3267726
[46] DOI: 10.1098/rsta.2006.1940 · Zbl 1152.76369 · doi:10.1098/rsta.2006.1940
[47] DOI: 10.1017/S0022112009006946 · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[48] DOI: 10.1017/S0022112095003363 · doi:10.1017/S0022112095003363
[49] DOI: 10.1016/j.ijheatfluidflow.2010.01.005 · doi:10.1016/j.ijheatfluidflow.2010.01.005
[50] Flow Turbul. Combust. 81 pp 115– (2007)
[51] Phys. Rev. Lett. 99 pp 41– (2007)
[52] DOI: 10.2514/1.19234 · doi:10.2514/1.19234
[53] DOI: 10.1017/S0022112009990814 · Zbl 1183.76767 · doi:10.1017/S0022112009990814
[54] The structure of turbulent shear flow (1976)
[55] DOI: 10.1017/S0022112005007780 · doi:10.1017/S0022112005007780
[56] Turbulent flows (2000)
[57] J. Fluid Mech. 478 pp 35– (2003)
[58] DOI: 10.1063/1.868336 · Zbl 0843.76039 · doi:10.1063/1.868336
[59] DOI: 10.1017/S0022112004002277 · Zbl 1060.76503 · doi:10.1017/S0022112004002277
[60] J. Fluid Mech. 461 pp 61– (2002)
[61] DOI: 10.1017/S0022112097008513 · Zbl 0922.76020 · doi:10.1017/S0022112097008513
[62] DOI: 10.1007/s10652-007-9021-z · doi:10.1007/s10652-007-9021-z
[63] DOI: 10.1017/S0022112009993430 · Zbl 1189.76021 · doi:10.1017/S0022112009993430
[64] DOI: 10.1103/PhysRevLett.95.074501 · doi:10.1103/PhysRevLett.95.074501
[65] DOI: 10.1063/1.3006423 · Zbl 1182.76550 · doi:10.1063/1.3006423
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.