zbMATH — the first resource for mathematics

Bifurcations in the wake of a thick circular disk. (English) Zbl 1191.76045
Summary: Using DNS, we investigate the dynamics in the wake of a circular disk of aspect ratio \(\chi = d/w = 3\) (where \(d\) is the diameter and \(w\) the thickness) embedded in a uniform flow of magnitude \(U _{0}\) perpendicular to its symmetry axis. As the Reynolds number \(Re = U _{0} d/\nu \) is increased, the flow is shown to experience an original series of bifurcations leading to chaos. The range \(Re {\in} [150, 218]\) is analysed in detail. In this range, five different non-axisymmetric regimes are successively encountered, including states similar to those previously identified in the flow past a sphere or an infinitely thin disk, as well as a new regime characterised by the presence of two distinct frequencies. A theoretical model based on the theory of mode interaction with symmetries, previously introduced to explain the bifurcations in the flow past a sphere or an infinitely thin disk [D. Fabre et al., Phys. Fluids 20, No. 5, Paper No. 051702, 4 p. (2008; Zbl 1182.76238)], is shown to explain correctly all these results. Higher values of the Reynolds number, up to 270, are also considered. Results indicate that the flow encounters at least four additional bifurcations before reaching a chaotic state.

76D25 Wakes and jets
Full Text: DOI
[1] Auguste, F., Fabre, D., Magnaudet, J.: Ecoulement de fluide visqueux autour d’un disque en incidence frontale. 18ème Congrès Français de Mécanique, Grenoble (France) (2007)
[2] Auguste, F., Fabre, D., Magnaudet, J.: Numerical study of solid cylinders moving freely in a viscous fluid. EFMC7 Conference, Manchester (UK) (2008) · Zbl 1182.76238
[3] Bouchet G., Mebarek M., Ducek J.: Hydrodynamic forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. B 25, 321–336 (2006) · Zbl 1093.76014 · doi:10.1016/j.euromechflu.2005.10.001
[4] Crawford J.D., Knobloch E.: Symmetry and symmetry-breaking bifurcations in fluid dynamics. Ann. Rev. Fluid Mech. 23, 341–387 (1991) · Zbl 0717.76007 · doi:10.1146/annurev.fl.23.010191.002013
[5] Fabre D., Auguste F., Magnaudet J.: Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 051702 (2008) · Zbl 1182.76238 · doi:10.1063/1.2909609
[6] Fernandes P.C., Risso F., Ern P., Magnaudet J.: Oscillatory motion and wake instability of freely-rising axisymmetric bodies. J. Fluid Mech. 573, 479–502 (2007) · Zbl 1108.76310 · doi:10.1017/S0022112006003685
[7] Fernandes P.C., Ern P., Risso F., Magnaudet J.: Dynamics of axisymmetric bodies rising along a zigzag path. J. Fluid Mech. 606, 209–223 (2007) · Zbl 1166.76017
[8] Golubitsky, M., Stewart, I., Schaeffer, D. M. (1988) Singularities and groups in bifurcation theory, vol. II. Applied Mathematical Sciences. Springer, Berlin · Zbl 0691.58003
[9] Johnson T.A., Patel V.C.: Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 19–70 (1999) · doi:10.1017/S0022112098003206
[10] Magnaudet J., Mougin G.: Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311–337 (2007) · Zbl 1188.76203 · doi:10.1017/S0022112006003442
[11] Meliga, P., Sipp, D., Chomaz, J.M.: Unsteadiness in the wake of the sphere: receptivity and weakly non-linear global stability analysis. 5th BBVIV Conference, Costa do Sauipe (Brazil) (2007) · Zbl 1183.76721
[12] Mittal R.: Planar symmetry in the unsteady wake of a sphere. AIAA J. 37, 388–390 (1999) · doi:10.2514/2.722
[13] Mougin G., Magnaudet J.: Path instability of a rising bubble. Phys. Rev. Lett. 88, 14502 (2002) · Zbl 1137.76687 · doi:10.1103/PhysRevLett.88.014502
[14] Ormières D., Provansal M.: Vortex dynamics in the wake of a sphere. Phys. Rev. Lett. 83, 80–83 (1999) · Zbl 0977.76502 · doi:10.1103/PhysRevLett.83.80
[15] Pesavento U., Wang Z.J.: Falling paper: Navier–Stokes solutions, model of fluid forces and center of mass elevation. Phys. Rev. Lett. 93, 14451 (2004) · doi:10.1103/PhysRevLett.93.144501
[16] Tomboulides A.G., Orzag S.A.: Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 45–73 (2000) · Zbl 1156.76419 · doi:10.1017/S0022112000008880
[17] Wilmarth W.W., Hawk N., Harvey R.: Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids 7, 197–208 (1964) · Zbl 0116.18903 · doi:10.1063/1.1711133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.