zbMATH — the first resource for mathematics

Goodness-of-fit problem for errors in nonparametric regression: distribution free approach. (English) Zbl 1369.62073
Summary: This paper discusses asymptotically distribution free tests for the classical goodness-of-fit hypothesis of an error distribution in nonparametric regression models. These tests are based on the same martingale transform of the residual empirical process as used in the one sample location model. This transformation eliminates extra randomization due to covariates but not due the errors, which is intrinsically present in the estimators of the regression function. Thus, tests based on the transformed process have, generally, better power. The results of this paper are applicable as soon as asymptotic uniform linearity of nonparametric residual empirical process is available. In particular they are applicable under the conditions stipulated in recent papers of [M. G. Akritas and I. Van Keilegom, Scand. J. Stat. 28, No. 3, 549–567 (2001; Zbl 0980.62027)] and [U. U. Müller et al., Stat. Decis. 25, No. 1, 1–18 (2007; Zbl 1137.62023); Stat. Probab. Lett. 79, No. 7, 957–964 (2009; Zbl 1158.62032)].

62G08 Nonparametric regression and quantile regression
62G10 Nonparametric hypothesis testing
Full Text: DOI arXiv
[1] Akritas, M. G. and van Keilegom, I. (2001). Nonparametric estimation of the residual distribution. Scand. J. Statist. 28 549-567. · Zbl 0980.62027 · doi:10.1111/1467-9469.00254
[2] Bai, J. (2003). Testing parametric conditional distributions of dynamic models. Rev. Econom. Statist. 85 531-549.
[3] Brownrigg, R. (2008). Testing normality in regression problems: Estimated empirical process, Khmaladze transformation, and power of K-S tests. Report 608 SMSCS, Victoria Univ. Wellington.
[4] Delgado, M. A., Hidalgo, J. and Velasco, C. (2005). Distribution free goodness-of-fit tests for linear processes. Ann. Statist. 33 2568-2609. · Zbl 1084.62038 · doi:10.1214/009053605000000606
[5] Feller, W. (1957). An Introduction to Probability Theory and Its Applications , 2nd ed. I . Wiley, New York. · Zbl 0077.12201
[6] Khmaladze, E. V. (1979). The use of \omega 2 tests for testing parametric hypotheses. Theory Probab. Appl. 24 283-301. · Zbl 0447.62049 · doi:10.1137/1124035
[7] Khmaladze, E. V. and Koul, H. L. (2004). Martingale transforms goodness-of-fit tests in regression models. Ann. Statist. 32 995-1034. · Zbl 1092.62052 · doi:10.1214/009053604000000274
[8] Koenker, R. and Xiao, Z. (2002). Inference on the quantile regression process. Econometrica 70 1583-1612. JSTOR: · Zbl 1152.62339 · doi:10.1111/1468-0262.00342 · links.jstor.org
[9] Koenker, R. and Xiao, Z. (2006). Quantile autoregression. J. Amer. Statist. Assoc. 101 980-990. · Zbl 1120.62326 · doi:10.1198/016214506000000672 · oberon.asa.catchword.org
[10] Koul, H. L. (2002). Weighted Empirical Processes in Dynamic Nonlinear Models. Weighted Empiricals and Linear Models , 2nd ed. Lecture Notes in Statistics 166 . Springer, New York. · Zbl 1007.62047 · doi:10.1007/978-1-4613-0055-7
[11] Koul, H. L. and Yi, T. (2006). Goodness-of-fit testing in interval censoring case 1. Statist. Probab. Lett. 76 709-718. · Zbl 1090.62044 · doi:10.1016/j.spl.2005.10.002
[12] Loynes, R. M. (1980). The empirical distribution function of residuals from generalised regression. Ann. Statist. 8 285-298. · Zbl 0451.62040 · doi:10.1214/aos/1176344954
[13] Müller, U. U., Schick, A. and Wefelmeyer, W. (2007). Estimating the error distribution function in semi-parametric regression. Statist. Decisions 25 1-18. · Zbl 1137.62023 · doi:10.1524/stnd.2007.25.1.1
[14] Müller, U. U., Schick, A. and Wefelmeyer, W. (2009). Estimating the error distribution function in nonparametric regression with multivariate covariates. Statist. Probab. Lett. 79 957-964. · Zbl 1158.62032 · doi:10.1016/j.spl.2008.11.024
[15] Nikabadze, A. M. (1987). A method for constructing likelihood tests for parametric hypotheses in \Bbb R m . Teor. Veroyatnost. i Primenen. 32 594-598. · Zbl 0648.62023 · doi:10.1137/1132081
[16] Soms, A. P. (1976). An asymptotic expansion for the tail area of the t -distribution. J. Amer. Statist. Assoc. 71 728-730. JSTOR: · Zbl 0362.62021 · doi:10.2307/2285610 · links.jstor.org
[17] Tjurin, Y. N. (1970). Testing parametric hypothesis with nonparametric tests. Teor. Verojatnost. i Primenen. 15 745-749.
[18] Tsigroshvili, Z. (1998). Some notes on goodness-of-fit tests and innovation martingales. Proc. A. Razmadze Math. Inst. 117 89-102. · Zbl 0978.62038
[19] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics . Springer, New York. · Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.