×

zbMATH — the first resource for mathematics

Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence. (English) Zbl 1193.76062
Summary: We report the multi-scale geometric analysis of Lagrangian structures in forced isotropic turbulence and also with a frozen turbulent field. A particle backward-tracking method, which is stable and topology preserving, was applied to obtain the Lagrangian scalar field \(\phi \) governed by the pure advection equation in the Eulerian form \(\partial _{t}\phi + u \cdot \nabla \phi\). he temporal evolution of Lagrangian structures was first obtained by extracting iso-surfaces of \(\phi\) with resolution \(1024^3\) at different times, from \(t = 0\) to \(t = T_e\), where \(T_e\) is the eddy turnover time. The surface area growth rate of the Lagrangian structure was quantified and the formation of stretched and rolled-up structures was observed in straining regions and stretched vortex tubes, respectively. The multi-scale geometric analysis of I. Bermejo-Moreno and D. I. Pullin [J. Fluid Mech. 603, 101–135 (2008; Zbl 1151.76522)] has been applied to the evolution of \(\phi\) to extract structures at different length scales and to characterize their non-local geometry in a space of reduced geometrical parameters. In this multi-scale sense, we observe, for the evolving turbulent velocity field, an evolutionary breakdown of initially large-scale Lagrangian structures that first distort and then either themselves are broken down or stretched laterally into sheets. Moreover, after a finite time, this progression appears to be insensible to the form of the initially smooth Lagrangian field. In comparison with the statistical geometry of instantaneous passive scalar and enstrophy fields in turbulence obtained by Bermejo-Moreno & Pullin [loc. cit.] and I. Bermejo-Moreno, K. Horiuti and D. I. Pullin [J. Fluid Mech. 620, 121-166 (2009; Zbl 1156.76406)], Lagrangian structures tend to exhibit more prevalent sheet-like shapes at intermediate and small scales. For the frozen flow, the Lagrangian field appears to be attracted onto a stream-surface field and it develops less complex multi-scale geometry than found for the turbulent velocity field. In the latter case, there appears to be a tendency for the Lagrangian field to move towards a vortex-surface field of the evolving turbulent flow but this is mitigated by cumulative viscous effects.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1145/311535.311548 · doi:10.1145/311535.311548
[2] DOI: 10.1242/jeb.007641 · doi:10.1242/jeb.007641
[3] DOI: 10.1017/S0022112005004040 · Zbl 1070.76033 · doi:10.1017/S0022112005004040
[4] DOI: 10.1137/05064182X · Zbl 1122.65134 · doi:10.1137/05064182X
[5] DOI: 10.1146/annurev.fluid.33.1.289 · doi:10.1146/annurev.fluid.33.1.289
[6] DOI: 10.1017/S0022112002002549 · Zbl 1065.76110 · doi:10.1017/S0022112002002549
[7] DOI: 10.1146/annurev.fluid.40.111406.102224 · Zbl 1159.76017 · doi:10.1146/annurev.fluid.40.111406.102224
[8] DOI: 10.1063/1.858333 · doi:10.1063/1.858333
[9] DOI: 10.1016/0021-9991(88)90022-8 · Zbl 0655.76042 · doi:10.1016/0021-9991(88)90022-8
[10] DOI: 10.1016/j.jcp.2007.04.014 · Zbl 1310.76127 · doi:10.1016/j.jcp.2007.04.014
[11] DOI: 10.1146/annurev.fluid.34.082101.170725 · doi:10.1146/annurev.fluid.34.082101.170725
[12] Yang, J. Turbul. 9 pp 1– (2008)
[13] DOI: 10.1016/S0167-2789(00)00199-8 · Zbl 1015.76077 · doi:10.1016/S0167-2789(00)00199-8
[14] DOI: 10.1017/S0022112007007240 · Zbl 1120.76024 · doi:10.1017/S0022112007007240
[15] DOI: 10.1088/1367-2630/10/1/013012 · doi:10.1088/1367-2630/10/1/013012
[16] DOI: 10.1017/S0022112090003330 · doi:10.1017/S0022112090003330
[17] DOI: 10.1146/annurev.fluid.32.1.203 · Zbl 0988.76042 · doi:10.1146/annurev.fluid.32.1.203
[18] DOI: 10.1146/annurev.fl.24.010192.002143 · doi:10.1146/annurev.fl.24.010192.002143
[19] DOI: 10.1017/S0022112006009128 · Zbl 1156.76405 · doi:10.1017/S0022112006009128
[20] Demanet, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series pp 67010J– (2007)
[21] DOI: 10.1146/annurev.fluid.010908.165210 · Zbl 1157.76020 · doi:10.1146/annurev.fluid.010908.165210
[22] DOI: 10.1017/S0022112009006867 · Zbl 1181.76088 · doi:10.1017/S0022112009006867
[23] DOI: 10.1112/plms/s2-20.1.196 · JFM 48.0961.01 · doi:10.1112/plms/s2-20.1.196
[24] DOI: 10.1063/1.857730 · doi:10.1063/1.857730
[25] DOI: 10.1103/PhysRevE.74.016701 · doi:10.1103/PhysRevE.74.016701
[26] DOI: 10.1063/1.866513 · doi:10.1063/1.866513
[27] Monin, Statistical Fluid Mechanics of Turbulence (1975)
[28] DOI: 10.1017/S0022112084001233 · Zbl 0559.76085 · doi:10.1017/S0022112084001233
[29] DOI: 10.1017/S0022112004009802 · Zbl 1107.76328 · doi:10.1017/S0022112004009802
[30] DOI: 10.1063/1.869361 · Zbl 1185.76770 · doi:10.1063/1.869361
[31] DOI: 10.1017/S0022112091003786 · Zbl 0749.76033 · doi:10.1017/S0022112091003786
[32] Marsden, Mathematical Foundations of Elasticity (1994)
[33] DOI: 10.1063/1.3177355 · Zbl 1183.76331 · doi:10.1063/1.3177355
[34] DOI: 10.1063/1.863957 · Zbl 0536.76034 · doi:10.1063/1.863957
[35] DOI: 10.1063/1.2432913 · Zbl 1146.76465 · doi:10.1063/1.2432913
[36] LeVeque, Numerical Methods for Conservation Laws (1992) · doi:10.1007/978-3-0348-8629-1
[37] DOI: 10.1017/S0022112008005132 · Zbl 1165.76374 · doi:10.1017/S0022112008005132
[38] DOI: 10.1063/1.1761271 · doi:10.1063/1.1761271
[39] DOI: 10.1017/S0305004100027687 · doi:10.1017/S0305004100027687
[40] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[41] DOI: 10.1017/S0022112083001822 · Zbl 0576.76088 · doi:10.1017/S0022112083001822
[42] DOI: 10.1017/S0022112083001159 · Zbl 0517.76033 · doi:10.1017/S0022112083001159
[43] DOI: 10.1103/PhysRevLett.85.5324 · doi:10.1103/PhysRevLett.85.5324
[44] DOI: 10.1126/science.1121726 · doi:10.1126/science.1121726
[45] DOI: 10.1063/1.858798 · Zbl 0793.76046 · doi:10.1063/1.858798
[46] DOI: 10.1063/1.868166 · Zbl 0845.76065 · doi:10.1063/1.868166
[47] DOI: 10.1017/S002211200800476X · Zbl 1156.76406 · doi:10.1017/S002211200800476X
[48] DOI: 10.1063/1.857474 · doi:10.1063/1.857474
[49] DOI: 10.1017/S002211200800092X · Zbl 1151.76522 · doi:10.1017/S002211200800092X
[50] DOI: 10.1146/annurev.fl.19.010187.001321 · doi:10.1146/annurev.fl.19.010187.001321
[51] DOI: 10.1098/rspa.1952.0130 · Zbl 0046.42201 · doi:10.1098/rspa.1952.0130
[52] DOI: 10.1063/1.870101 · Zbl 1147.76360 · doi:10.1063/1.870101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.