×

zbMATH — the first resource for mathematics

Oracle efficient variable selection in random and fixed effects panel data models. (English) Zbl 1316.62100
Summary: This paper generalizes the results for the bridge estimator of J. Huang et al. [Ann. Stat. 36, No. 2, 587–613 (2008; Zbl 1133.62048)]. to linear random and fixed effects panel data models which are allowed to grow in both dimensions. In particular, we show that the Bridge estimator isoracle efficient. It can correctly distinguish between relevant and irrelevant variables and the asymptotic distribution of the estimators of the coefficients of the relevant variables is the same as if only these had been included in the model, i.e. as if an oracle had revealed the true model prior to estimation.

MSC:
62J05 Linear regression; mixed models
62J07 Ridge regression; shrinkage estimators (Lasso)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Counterexamples in Probability (1997) · Zbl 0884.60001
[2] DOI: 10.1214/07-AOS582 · Zbl 1155.62050 · doi:10.1214/07-AOS582
[3] DOI: 10.1214/aos/1015957397 · Zbl 1105.62357 · doi:10.1214/aos/1015957397
[4] DOI: 10.1214/009053605000000200 · Zbl 1078.62028 · doi:10.1214/009053605000000200
[5] DOI: 10.1214/009053607000000875 · Zbl 1133.62048 · doi:10.1214/009053607000000875
[6] Journal of the Royal Statistical Society, Series B 73 pp 267– (1996)
[7] DOI: 10.1111/j.1467-9868.2008.00674.x · doi:10.1111/j.1467-9868.2008.00674.x
[8] DOI: 10.1214/009053606000001523 · Zbl 1139.62019 · doi:10.1214/009053606000001523
[9] Panel Data Econometrics (2003) · Zbl 1057.62112
[10] DOI: 10.1198/016214506000000735 · Zbl 1171.62326 · doi:10.1198/016214506000000735
[11] Weak Convergence and Empirical Processes (1996) · doi:10.1007/978-1-4757-2545-2
[12] Probability with a View Toward Statistics 1 (1994) · Zbl 0821.62003 · doi:10.1007/978-1-4899-3019-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.