zbMATH — the first resource for mathematics

Global well-posedness of incompressible Bénard problem with zero dissipation or zero thermal diffusivity. (English) Zbl 1426.35193
Summary: In this paper, we establish the global well-posedness of the classical solution for the two-dimensional Bénard problem with zero dissipation or zero thermal diffusivity. Our work is partially motivated by the results about Boussinesq equations with zero dissipation or zero thermal diffusivity in [D. Chae, Adv. Math. 203, No. 2, 497–513 (2006; Zbl 1100.35084)] and [T. Y. Hou and C. Li, Discrete Contin. Dyn. Syst. 12, No. 1, 1–12 (2005; Zbl 1274.76185)].

35Q35 PDEs in connection with fluid mechanics
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35B65 Smoothness and regularity of solutions to PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Abidi, H.; Hmidi, T., On the global well-posedness for Boussinesq system, J. Differ. Equ., 233, 199-220, (2007) · Zbl 1111.35032
[2] Ambrosetti, A.; Prodi, G., A primer of nonlinear analysis, Cambridge Studies in Advanced Mathematics, 34, (1995), Cambridge University Press Cambridge · Zbl 0818.47059
[3] Brezis, H.; Wainger, S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Partial Differ. Equ., 5, 7, 773-789, (1980) · Zbl 0437.35071
[4] Cannon, J. R.; DiBenedetto, E., The initial value problem for the Boussinesq equations with data in l^P, Lecture Notes in Mathematics, Springer, Berlin, 771, 129-144, (1980)
[5] Chae, D., Global regularity for the 2-d Boussinesq equations with partial viscous terms, Adv. Math., 203, 2, 497-513, (2006) · Zbl 1100.35084
[6] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, (1981), Dover Publications Inc.
[7] Danchin, R.; Paicu, M., Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Physica D, 237, 1444-1460, (2008) · Zbl 1143.76432
[8] Danchin, R.; Paicu, M., Global well-posedness issues for the inviscid Boussinesq system with yudovichs type data, Commun. Math. Phys., 290, 1-14, (2009) · Zbl 1186.35157
[9] Danchin, R.; Paicu, M., Global existence results for the anisotropic Boussinesq system in dimension two, Math. Model. Method Appl. Sci., 21, 421-457, (2011) · Zbl 1223.35249
[10] Du, L.; Zhou, D., Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion, SIAM J. Math. Anal., 47, 1562-1589, (2015) · Zbl 1323.35143
[11] Hmidi, T.; Keraani, S., On the global well-posedness of the Boussinesq system with zero viscosity, Adv. Differ. Equ., 12, 4, 461-480, (2007) · Zbl 1154.35073
[12] Hmidi, T.; Keraani, S., On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58, 1591-1618, (2009) · Zbl 1178.35303
[13] Hmidi, T.; Zerguine, M., On the global well-posedness of the Euler-Boussinesq system with fractional dissipation, Physica D, 239, 1387-1401, (2010) · Zbl 1194.35329
[14] Hou, T.; Li, C., Global well-posedness of the viscous Boussinesq equations, Discret. Contin. Dyn. Syst., 12, 1-12, (2005) · Zbl 1274.76185
[15] Lin, H.; Du, L., Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions, Nonlinearity, 26, 219-239, (2013) · Zbl 1273.35076
[16] Ma, T.; Wang, S., Rayleigh Bénard convection: dynamics and structure in the physical space, Commun. Math. Sci., 5, 3, 553-574, (2007) · Zbl 1133.35426
[17] Majda, A.; Bertozzi, A., Vorticity and Incompressible Flow, (2002), Cambridge University Press Cambridge, UK
[18] Miao, C.; Zheng, X., On the global well-posedness for the Boussinesq system with horizontal dissipation, Commun. Math. Phys., 321, 33-67, (2013) · Zbl 1307.35233
[19] Miao, C.; Zheng, X., Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity, J. Math. Pures Appl., 101, 842-872, (2014) · Zbl 1296.35145
[20] Moffatt, H. K., Some remarks on topological fluid mechanics, An Introduction to the Geometry and Topology of Fluid Flows, 3-10, (2011), Kluwer Dordrecht · Zbl 1100.76500
[21] Rabinowitz, P. H., Existence and nonuniqueness of rectangular solutions of the Bénard problem, Arch. Ration. Mech. Anal., 29, 32-57, (1968) · Zbl 0164.28704
[22] Xiang, Z.; Yan, W., Global regularity of solutions to the Boussinesq equations with fractional diffusion, Adv. Differ. Equ., 18, 1105-1128, (2013) · Zbl 1280.35117
[23] Xu, X., Global regularity of solutions of 2d Boussinesq equations with fractional diffusion, Nonlinear Anal., 72, 677-681, (2010) · Zbl 1177.76024
[24] Wu, G.; Xue, L., Global well-posedness for the 2d inviscid Bénard system with fractional diffusivity and yudovich’s data, J. Differ. Equ., 253, 100-125, (2012) · Zbl 1305.35119
[25] Cheng, J.; Du, L., On two-dimensional magnetic Bénard problem with mixed partial viscosity, J. Math. Fluid Mech., 17, 4, 769-797, (2015) · Zbl 1329.35245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.