×

zbMATH — the first resource for mathematics

Long time behavior of weak solutions to Navier-Stokes-Poisson system. (English) Zbl 1294.35058
Summary: B. Ducomet et al. [Discrete Contin. Dyn. Syst. 11, No. 1, 113–130 (2004; Zbl 1080.35068)] showed the existence of global weak solutions to the Navier-Stokes-Poisson system. We study the global behavior of such a solution. This is done by (1) proving uniqueness of a solution to the stationary system; (2) by showing convergence of a weak solution to the stationary solution. In (1) we consider only the case with repulsion. We prove our result in the case of a bounded domain with smooth boundary in \({\mathbb{R}^3}\) and also in the case of the whole space \({\mathbb{R}^3}\).

MSC:
35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989) · Zbl 0696.34049 · doi:10.1007/BF01393835
[2] Donatelli D.: Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart. Appl. Math. 61(2), 345–361 (2003) · Zbl 1039.35075
[3] Ducomet B., Zlotnik A.: Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl. Math. Lett. 18(10), 1190–1198 (2005) · Zbl 1125.35071 · doi:10.1016/j.aml.2004.12.002
[4] Ducomet B., Feireisl E., Petzeltová H., Straškraba I.: Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete Contin. Dyn. Syst. 11(1), 113–130 (2004) · Zbl 1080.35068 · doi:10.3934/dcds.2004.11.113
[5] Feireisl E., Petzeltová H.: Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow. Arch. Ration. Mech. Anal. 150(1), 77–96 (1999) · Zbl 0946.35058 · doi:10.1007/s002050050181
[6] Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Linearized steady problems, vol. I. In: Springer Tracts in Natural Philosophy, vol. 38. Springer, New York (1994) · Zbl 0949.35004
[7] Jiang F., Tan Z., Yan Q.: Asymptotic compactness of global trajectories generated by the Navier-Stokes-Poisson equations of a compressible fluid. Nonlinear Differ. Equ. Appl. 16(3), 355–380 (2009) · Zbl 1178.35292 · doi:10.1007/s00030-009-0021-1
[8] Kobayashi T., Suzuki T.: Weak solutions to the Navier-Stokes-Poisson equation. Adv. Math. Sci. Appl. 18(1), 141–168 (2008) · Zbl 1162.35002
[9] Li, H.-L., Matsumura, A., Zhang, G.: Optimal decay rate of the compressible Navier-Stokes-Poisson system in $${\(\backslash\)mathbb{R}\^3}$$ (2008)
[10] Matušu-Nečasová Š., Okada M., Makino T.: Free boundary problem for the equation of spherically symmetric motion of viscous gas. III. Jpn. J. Indust. Appl. Math. 14(2), 199–213 (1997) · Zbl 1306.76038 · doi:10.1007/BF03167264
[11] Tan Z., Wang Y.: Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force. Nonlinear Anal. 71(11), 5866–5884 (2009) · Zbl 1172.76060 · doi:10.1016/j.na.2009.05.012
[12] Zhang Y., Tan Z.: On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow. Math. Methods Appl. Sci. 30(3), 305–329 (2007) · Zbl 1107.76065 · doi:10.1002/mma.786
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.