×

zbMATH — the first resource for mathematics

Reproducing kernel element method. II: Globally conforming \(I^m/C^n\) hierarchies. (English) Zbl 1093.74062
Summary: In this part of the work [for part I see the first four authors and J. Cao, ibid. 193, No. 12–14, 933–951 (2004; Zbl 1060.74670)], a minimal degrees of freedom, arbitrary smooth, globally compatible, \(I^m/C^n\) interpolation hierarchy is constructed in the framework of reproducing kernel element method (RKEM) for arbitrary multiple dimensional domains. This is the first interpolation hierarchical structure that has been constructed with both minimal degrees of freedom and higher-order smoothness or continuity over multi-dimensional domain. The proposed hierarchical structure possesses the generalized Kronecker property, i.e.
\[ \partial^{\alpha} \Psi_I^{(\beta)}/\partial x^{\alpha} (x_j) = \delta_{IJ}\delta_{\alpha\beta}, \quad |\alpha|,|\beta| \leq m. \]
This contribution is the latest breakthrough of an outstanding problem – construction of a minimal degrees of freedom, globally conforming, \(I^m/C^n\) finite element interpolation fields on an arbitrary mesh or subdivision of multiple dimension. The newly constructed globally conforming interpolant is a hybrid of a set of \(C^{\infty}\) global partition polynomials with a highly smooth (\(C^n\)) compactly supported meshfree partition of unity. Examples of compatible RKEM hierarchical interpolations are illustrated, and they are used in a Galerkin procedure to solve differential equations.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Argyris, J.H.; Fried, I.; Scharpf, D.W., The TUBA family of plate elements for the matrix displacement method, Aeronaut. roy. aeronaut. soc., 72, 701-709, (1968)
[2] Barnhill, R.E.; Birkhoff, G.; Gordon, W.J., Smooth interpolation in triangles, J. approx. theory, 8, 114-128, (1973) · Zbl 0271.41002
[3] G.P. Bazeley, Y.K. Cheung, B.M. Irons, O.C. Zienkiewicz, Triangle elements in bending: conforming and nonconforming solutions, in: Proc. 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson, AFB, OH, 1965
[4] Bell, K., A refined triangular plate bending finite element, Int. J. numer. methods engrg., 1, 101-122, (1969)
[5] Birkhoff, G.; Schultz, M.H.; Varga, R.S., Piecewise Hermite interpolation in one and two variables with applications to partial differential equations, Numer. math., 11, 232-256, (1968) · Zbl 0159.20904
[6] F.K. Bogner, R.L. Fox, L.A. Schmit, The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulae, in: Proc. 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson, AFB, OH
[7] R.W. Clough, J. Tocher, Finite element stiffness matrices for the analysis of plate bending, in: Proc. 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson, AFB, OH, 1965
[8] F.B. de Veubeke, Bending and stretching of plates–special models for upper and lower bounds, in: Proc. 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson, AFB, OH, 1965
[9] de Veubeke, F.B., A conforming finite element for plate bending, Int. J. solids struct., 4, 95-108, (1968) · Zbl 0168.22602
[10] Felippa, C.; Clough, R.W., The finite element in solid mechanics, (), 210-252
[11] Gallagher, R.H.; Cellatly, R.A.; Padlog, J.; Mallett, R.H., A discrete element procedure for thin-shell instability analysis, Aiaa j., 5, 138-145, (1967)
[12] Han, W.; Meng, X., Error analysis of the reproducing kernel particle method, Comput. methods appl. mech. engrg., 190, 6157-6181, (2001) · Zbl 0992.65119
[13] Hao, S.; Park, H.S.; Liu, W.K., Moving particle finite element method, Int. J. numer. methods engrg., 53, 1937-1958, (2002) · Zbl 1169.74606
[14] Hughes, T.J.R., The finite element method, (1987), Prentice Hall Englewood Cliffs, NJ
[15] Irons, B.M., A conforming quadratic triangular element for plate bending, Int. J. numer. methods engrg., 1, 29-45, (1969) · Zbl 0247.73071
[16] Irons, B.M.; Razzaque, A., Experience with the patch test for convergence of finite element methods, (), 557-587
[17] Li, S.; Liu, W.K., Meshfree and particle methods and their applications, Appl. mech. rev., 55, 1-34, (2002)
[18] Liu, W.K.; Chen, Y.; Uras, R.A.; Chang, T.C., Generalized multiple scale reproducing kernel particle methods, Comput. methods appl. mech. engrg., 139, 91-157, (1996) · Zbl 0896.76069
[19] Liu, W.K.; Uras, R.A.; Chen, Y., Enrichment of the finite element method with the reproducing kernel particle method, J. appl. mech., 64, 861-870, (1997) · Zbl 0920.73366
[20] W.K. Liu, W. Han, H. Lu, S. Li, J. Cao, Reproducing kernel element method: Part I. Theoretical formulation, Comput. Methods Appl. Mech. Engrg., in this issue · Zbl 1060.74670
[21] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. numer. methods engrg., 38, 1655-1679, (1995) · Zbl 0840.73078
[22] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[23] Liu, W.K.; Li, S.; Belytschko, T., Moving least square reproducing kernel method part I: methodology and convergence, Comput. methods appl. mech. engrg., 143, 422-453, (1997)
[24] H. Lu, S. Li, D.C. Simkins Jr., W.K. Liu, J. Cao, Reproducing kernel element method Part III. Generalized enrichment and applications, Comput. Methods Appl. Mech. Engrg., in this issue
[25] Przemieniecki, J.S., Theory of matrix structural analysis, (1968), McGraw-Hill · Zbl 0177.53201
[26] D.C. Simkins Jr., S. Li, H. Lu, W.K. Liu, Reproducing kernel element method. Part IV. Globally compatible \(C\^{}\{n\}(n⩾1)\) triangle hierarchy, Comput. Methods Appl. Mech. Engrg., in this issue
[27] Bramble, J.H.; Zlamal, M., Triangle elements in the finite element method, Mathematics of computation, 24, 809-820, (1970) · Zbl 0226.65073
[28] Birkhoff, G.; Gordon, W.J., The Draftsman’s and related equations, J. approx. theory, 1, 199-208, (1986) · Zbl 0189.40902
[29] Birkhoff, G., Interpolation to boundary data in triangles, J. mathematical anal. applic., 42, 474-484, (1973) · Zbl 0262.41003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.