×

zbMATH — the first resource for mathematics

Testing normality: a GMM approach. (English) Zbl 1336.62056
Summary: In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the C. Stein [in: Proc. 6th Berkeley Sympos. math. Statist. Probab., Univ. Calif. 1970, 2, 583–602 (1972; Zbl 0278.60026)] equations. They coincide with the first class of moment conditions derived by L. P. Hansen and J. A. Scheinkman [Econometrica 63, No. 4, 767–804 (1995; Zbl 0834.60083)] when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopt is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a heteroskedastic-autocorrelation-consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with C. M. Jarque and A. K. Bera [“Efficient tests for normality, homoscedasticity and serial independence of regression residuals”, Econ. Lett. 6, No. 3, 255–259 (1980; doi:10.1016/0165-1765(80)90024-5)] and OPG regression tests of R. Davidson and J. G. MacKinnon [Estimation and inference in econometrics. New York, NY: Oxford University Press (1993; Zbl 1009.62596)]. Finite sample properties of our tests are derived through a comprehensive Monte Carlo study. Finally, two applications to GARCH and realized volatility models are presented.

MSC:
62F03 Parametric hypothesis testing
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P20 Applications of statistics to economics
Software:
nlmdl
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aı̈t-Sahalia, Y., Testing continuous-time models of the spot interest rate, Review of financial studies, 9, 385-426, (1996)
[2] Aı̈t-Sahalia, Y., Hansen, L.P., Scheinkman, J., 2001. Operator methods for continuous-time Markov models. In: Aı̈t-Sahalia, Y., Hansen, L.P. (Eds.), Handbook of Financial Econometrics, forthcoming.
[3] Amemiya, T., The maximum likelihood and the nonlinear three-stage least squares estimator in the general nonlinear simultaneous equation model, Econometrica, 45, 955-968, (1977) · Zbl 0359.62026
[4] Andersen, T.G.; Bollerslev, T., Answering the skepticsyes, standard volatility models do provide accurate forecasts, International economic review, 39, 885-905, (1998)
[5] Andersen, T.G.; Chung, H.J.; Sorensen, B.E., Efficient method of moment estimation of a stochastic volatility modela Monte Carlo study, Journal of econometrics, 91, 61-87, (1999) · Zbl 0937.62105
[6] Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Labys, P., The distribution of exchange rate volatility, Journal of the American statistical association, 96, 42-55, (2001) · Zbl 1015.62107
[7] Andersen, T.G., Bollerslev, T., Diebold, F.X., 2002. Parametric and nonparametric measurements of volatility. In: Aı̈t-Sahalia, Y., Hansen, L.P. (Eds.), Handbook of Financial Econometrics, forthcoming.
[8] Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Labys, P., Modeling and forecasting realized volatility, Econometrica, 71, 579-625, (2003) · Zbl 1142.91712
[9] Andrews, D.W.K., Heteroskedasticity and autocorrelation consistent covariance matrix estimation, Econometrica, 60, 953-966, (1991) · Zbl 0778.62103
[10] Bai, J., Testing parametric conditional distributions of dynamic models, Review of economics and statistics, 85, 531-549, (2003)
[11] Bai, J., Ng, S., 2002. Tests for skewness, kurtosis, and normality for time series data. Unpublished manuscript, Johns Hopkins University.
[12] Barndorff-Nielsen, O.E.; Shephard, N., Non-Gaussian OU based models and some of their uses in financial economics, Journal of the royal statistical society B, 63, 167-241, (2001), (with discussion) · Zbl 0983.60028
[13] Barndorff-Nielsen, O.E.; Shephard, N., Estimating quadratic variation using realised variance t, Journal of applied econometrics, 5, 457-477, (2002)
[14] Bera, A.K.; Jarque, C.M., Efficient tests for normality, homoscedasticity and serial independence of regression residualsmonte Carlo evidence, Economics letters, 7, 313-318, (1981)
[15] Bera, A.; John, S., Tests for multivariate normality with Pearson alternatives, Communications in statistics – theory and methods, 12, 103-107, (1983)
[16] Beran, J.; Ghosh, S., Slowly decaying correlation, testing normality, nuisance parameters, Journal of the American statistical association, 86, 785-791, (1991) · Zbl 0735.62084
[17] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, Journal of econometrics, 31, 307-327, (1986) · Zbl 0616.62119
[18] Bollerslev, T., A conditional heteroskedastic time series model for speculative prices and rates of returns, Review of economics and statistics, 69, 542-547, (1987)
[19] Bollerslev, T.; Wooldridge, J.F., Quasi maximum likelihood estimation and inference in dynamic models with time varying covariances, Econometric reviews, 11, 143-172, (1992) · Zbl 0850.62884
[20] Bollerslev, T., Engle, R., Nelson, D.B., 1994. ARCH Models. Handbook of Econometrics, Vol IV, North-Holland, Amsterdam, pp. 2959-3038.
[21] Bontemps, C., Meddahi, N., 2002. Testing normality: a GMM approach. CIRANO Working Paper, 2002s-63. · Zbl 1336.62056
[22] Bowman, K.O.; Shenton, L.R., Omnibus test contours for departures from normality based on \(b1\) and b2, Biometrika, 62, 243-250, (1975) · Zbl 0308.62016
[23] Chen, X., Hansen, L.P., Scheinkman, J., 2000. Principal components and the long run. Unpublished manuscript, University of Chicago. · Zbl 1191.62107
[24] Conley, T.; Hansen, L.P.; Luttmer, E.; Scheinkman, J., Short-term interest rates as subordinated diffusions, Review of financial studies, 10, 525-577, (1997)
[25] Corradi, V., Swanson, N.R., 2002. A bootstrap specification test for diffusion processes. Working Paper, Rutgers University. · Zbl 1337.62193
[26] Davidson, R.; MacKinnon, J.G., Model specification tests based on artificial linear regressions, International economic review, 25, 485-502, (1984) · Zbl 0554.62099
[27] Davidson, R.; MacKinnon, J.G., A new form of the information matrix test, Econometrica, 60, 145-157, (1992) · Zbl 0744.62150
[28] Davidson, R.; MacKinnon, J.G., Estimation and inference in econometrics, (1993), Oxford University Press Oxford · Zbl 1009.62596
[29] Diebold, F.X.; Gunther, T.A.; Tay, A.S., Evaluating density forecasts, with applications to financial risk management, International economic review, 39, 863-883, (1998)
[30] Duan, J.C., 2003. A specification test for time series models by a normality transformation. Working Paper, University of Toronto.
[31] Dufour, J.-M.; Farhat, A.; Gardiol, L.; Khalaf, L., Simulation-based finite sample normality tests in linear regressions, Econometrics journal, 1, C154-C173, (1998)
[32] Engle, R.F., Autoregressive conditional heteroskedasticity with estimates of the variance of united kingdom inflation, Econometrica, 50, 987-1007, (1982) · Zbl 0491.62099
[33] Epps, T.W.; Pulley, L.B., A test for normality based on the empirical characteristic function, Biometrika, 70, 723-726, (1983) · Zbl 0523.62045
[34] Epps, T.W.; Singleton, K.; Pulley, L.B., A test of separate families of distributions based on the empirical moment generating function, Biometrika, 69, 391-399, (1982) · Zbl 0494.62050
[35] Fiorentini, G.; Sentana, E.; Calzolari, G., Maximum likelihood estimation and inference in multivariate conditionally heteroskedastic dynamic regression models with student t innovations, Journal of business and economic statistics, 21, 532-546, (2003)
[36] Fiorentini, G., Sentana, E., Calzolari, G., 2003b. On the validity of the Jarque-Bera normality test in conditionally heteroskedastic dynamic regression models. Working Paper, CEMFI. · Zbl 1254.91584
[37] Gallant, A.R., Explicit estimators of parametric functions in nonlinear regressions, Journal of the American statistical association, 75, 182-193, (1980) · Zbl 0425.62045
[38] Gallant, A.R., Nonlinear statistical models, (1987), Wiley New York · Zbl 0611.62071
[39] Gallant, A.R.; Tauchen, G., The relative efficiency of methods of moments estimators, Journal of econometrics, 92, 149-172, (1999) · Zbl 0956.62030
[40] Gallant, A.R.; White, H., A unified theory of estimation and inference for nonlinear dynamic models, (1988), Basil Blackwell Oxford
[41] Gouriéroux, C.; Monfort, A., Simulation-based econometric methods. CORE lectures, (1996), Oxford University Press Oxford · Zbl 1420.91461
[42] Hall, A., Lagrange multiplier tests for normality against semiparametric alternatives, Journal of business and economic statistics, 8, 417-426, (1990)
[43] Hansen, L.P., Large sample properties of generalized method of moments estimators, Econometrica, 50, 1029-1054, (1982) · Zbl 0502.62098
[44] Hansen, L.P.; Scheinkman, J., Back to the futuregenerating moment implications for continuous time Markov processes, Econometrica, 63, 767-804, (1995) · Zbl 0834.60083
[45] Harvey, A.C.; Ruiz, E.; Shephard, N., Multivariate stochastic variance models, Review of economic studies, 61, 247-264, (1994) · Zbl 0805.90026
[46] Hong, Y., Li, H., 2002. Nonparametric specification testing for continuous-time models with application to spot interest rates. Working Paper, Cornell University.
[47] Jacquier, E.; Polson, N.G.; Rossi, P.E., Bayesian analysis of stochastic volatility models, Journal of business and economic statistics, 12, 371-389, (1994)
[48] Jarque, C.M.; Bera, A.K., Efficient tests for normality, homoscedasticity and serial independence of regression residuals, Economics letters, 6, 255-259, (1980)
[49] Kiefer, N.M.; Salmon, M., Testing normality in econometric models, Economics letters, 11, 123-127, (1983) · Zbl 1273.91371
[50] Kilian, L.; Demiroglu, U., Residual-based test for normality in autoregressionsasymptotic theory and simulation evidence, Journal of business and economic statistics, 18, 40-50, (2000)
[51] Kim, S.; Shephard, N.; Chib, S., Stochastic volatilitylikelihood inference and comparison with ARCH models, Review of economic studies, 65, 361-393, (1998) · Zbl 0910.90067
[52] Kolmogorov, A.N., Sulla determinazione empiricadi una legge di distribuzione, Giorna. ist. attuari, 4, 83-91, (1933) · JFM 59.1166.03
[53] Koutrouvelis, I.A., A goodness-of-fit test of simple hypotheses based on the empirical characteristic function, Biometrika, 67, 238-240, (1980) · Zbl 0425.62024
[54] Koutrouvelis, I.A.; Kellermeier, J., A goodness-of-fit test based on the empirical characteristic function when parameters must be estimated, Journal of the royal statistical society series B, 43, 173-176, (1981) · Zbl 0473.62037
[55] Lilliefors, H.W., On the kolmogorov – smirnov test for normality with Mean and variance, Journal of the American statistical association, 62, 399-402, (1967)
[56] MacKinnon, J.G.; Magee, L., Transforming the dependent variable in regression variables, International economic review, 31, 315-339, (1990) · Zbl 0711.62104
[57] Mardia, K.V., Measures of multivariate skewness and kurtosis with applications, Biometrika, 57, 519-530, (1970) · Zbl 0214.46302
[58] Nelson, D.B., Conditional heteroskedasticity in asset returnsa new approach, Econometrica, 59, 347-370, (1991) · Zbl 0722.62069
[59] Newey, W.K., Generalized method of moments specification testing, Journal of econometrics, 29, 229-256, (1985) · Zbl 0606.62132
[60] Newey, W.K.; West, K.D., A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica, 55, 703-708, (1987) · Zbl 0658.62139
[61] Richardson, M.; Smith, T., A test for multivariate normality in stock returns, Journal of business, 66, 295-321, (1993)
[62] Schoutens, W., Stochastic processes and orthogonal polynomials, Lecture notes in statistics, Vol. 146, (2000), Springer Berlin · Zbl 0960.60076
[63] Smirnov, N.V., Sur LES écarts de la courbe de distribution empirique, French/Russian su matematiceskii sbornik N. S, 6, 3-26, (1939) · JFM 65.0561.03
[64] Stein, C., 1972. A bound for the error in the normal approximation to the distribution of a sum of dependant random variables. Proceedings of the Sixth Berkeley Symposium on Mathematics, Statistics and Probability, Vol. 2, pp. 583-602.
[65] Taqqu, M., Convergence of iterated processes of arbitrary Hermite rank, Zeitschrift für wahrscheinlichkeitstheorie under verwandte gebiete, 50, 53-83, (1979) · Zbl 0397.60028
[66] Tauchen, G.E., Diagnostic testing and evaluation of maximum likelihood models, Journal of econometrics, 30, 415-443, (1985) · Zbl 0591.62094
[67] Taylor, S.J., Modeling financial time series, (1986), Wiley New York
[68] Thomakos, D.D.; Wang, T., Realized volatility in the future markets, Journal of empirical finance, 10, 321-353, (2003)
[69] Thompson, S., 2002. Specification tests for continuous time models. Working Paper, Harvard University.
[70] van der Klaauw, B.; Koning, R.H., Testing the normality assumption in the sample selection model with an application to travel demand, Journal of business and economic statistics, 21, 31-42, (2003)
[71] White, H., Maximum likelihood estimation of misspecified models, Econometrica, 50, 1-25, (1982) · Zbl 0478.62088
[72] White, H.; MacDonald, G.M., Some large-sample tests for nonnormality in the linear regression model, Journal of the American statistical association, 75, 16-28, (1980) · Zbl 0434.62044
[73] Wooldridge, J., A unified approach to robust, regression-based specification tests, Econometric theory, 6, 17-43, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.