×

zbMATH — the first resource for mathematics

Oscillatory dynamics for a coupled membrane-bulk diffusion model with Fitzhugh-Nagumo membrane kinetics. (English) Zbl 1347.35032

MSC:
35B32 Bifurcations in context of PDEs
35B20 Perturbations in context of PDEs
35B35 Stability in context of PDEs
92B25 Biological rhythms and synchronization
35K51 Initial-boundary value problems for second-order parabolic systems
35K58 Semilinear parabolic equations
35B25 Singular perturbations in context of PDEs
Software:
XPPAUT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. C. Alexander, Spontaneous oscillations in two 2-component cells coupled by diffusion, J. Math. Biol., 23 (1986), pp. 205–219. · Zbl 0588.92002
[2] P. Ashwin, S. Coombes, and R. Nicks, Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience, arXiv:1506.05828, 2015. · Zbl 1356.92015
[3] S. M. Baer, T. Erneux, and J. Rinzel, The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance, SIAM J. Appl. Math., 49 (1989), pp. 55–71. · Zbl 0683.34039
[4] R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57 (1995), pp. 413–439. · Zbl 0813.92010
[5] P. C. Bressloff and S. D. Lawley, Escape from subcellular domains with randomly switching boundaries, Multi. Model. Simul., 13 (2015), pp. 1420–1445. · Zbl 1329.82092
[6] W. Y. Chiang, Y. X. Li, and P. Y. Lai, Simple models for quorum sensing: Nonlinear dynamical analysis, Phys. Rev. E., 84 (2011), 041921.
[7] G. B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, Philadelphia, 2002. · Zbl 1003.68738
[8] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, UK, 1990. · Zbl 0837.92009
[9] A. Gomez-Marin, J. Garcia-Ojalvo, and J. M. Sancho, Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling, Phys. Rev. Lett., 98 (2007), 168303.
[10] J. Gou, Y. X. Li, and W. Nagata, Interactions of in-phase and anti-phase synchronies in two cells coupled by a spatially diffusing chemical: Double-Hopf bifurcations, IMA J. Appl. Math., accepted.
[11] J. Gou, W. Y. Chiang, P. Y. Lai, M. J. Ward, and Y. X. Li, A theory of synchrony by coupling through a diffusive medium, Phys. Rev. E., submitted. · Zbl 1376.92020
[12] J. Gou, Y. X. Li, W. Nagata, and M. J. Ward, Synchronized oscillatory dynamics for a 1-D model of membrane kinetics coupled by linear bulk diffusion, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 2096–2137. · Zbl 1331.35038
[13] J. Gou and M. J. Ward, An asymptotic analysis of a 2-D model of dynamically active compartments coupled by bulk diffusion, J. Nonlinear Sci., to appear. · Zbl 1439.92024
[14] S. D. Lawley, J. C. Mattingly, and M. C. Reed, Stochastic switching in infinite dimensions with application to random parabolic PDEs, SIAM J. Math. Anal., 47 (2015), pp. 3035–3063. · Zbl 1338.35515
[15] B. N. Kholodenko, Cell-signalling dynamics in time and space, Nat. Rev. Mol. Cell Biol., 7 (2006), pp. 165–176.
[16] D. Kulginov, V. P. Zhdanov, and B. Kasemo, Oscillatory surface reaction kinetics due to coupling of bistability and diffusion limitations, J. Chem. Phys., 106 (1997), p. 3117.
[17] H. Levine and W. J. Rappel, Membrane bound turing patterns, Phys. Rev. E., 72 (2005), 061912.
[18] P. Mandel and T. Erneux, The slow passage through a steady bifurcation: Delay and memory effects, J. Stat. Phys., 48 (1987), pp. 1059–1070.
[19] J. Müller and H. Uecker, Approximating the dynamics of communicating cells in a diffusive medium by ODEs: Homogenization with localization, J. Math. Biol., 67 (2013), pp. 1023–1065. · Zbl 1277.35036
[20] J. Müller, C. Kuttler, B. A. Hense, M. Rothballer, and A. Hartmann, Cell-cell communication by quorum sensing and dimension-reduction, J. Math. Biol., 53 (2006), pp. 672–702. · Zbl 1113.92022
[21] F. Naqib, T. Quail, L. Musa, H. Vulpe, J. Nadeau, J. Lei, and L. Glass, Tunable oscillations and chaotic dynamics in systems with localized synthesis, Phys. Rev. E., 85 (2012), 046210.
[22] H. Nakao, Phase reduction approach to synchronization of nonlinear oscillators, Contemp. Phys., Oct. 2015.
[23] A. P. Peirce and H. Rabitz, Effect of Defect structures on chemically active surfaces: A continuum approach, Phys. Rev. B., 38 (1998), pp. 1734–1753.
[24] M. Remme, M. Lengyel, and B. Gutkin, The role of ongoing dendritic oscillations in single-neuron dynamics, PLoS Comput. Biol., 5 (2009), e1000493.
[25] H. Riecke and L. Kramer, Surface-induced chemical oscillations and their influence on space- and time-periodic patterns, J. Chem. Phys., 83 (1985), p. 3941.
[26] M. A. Schwemmer and T. J. Lewis, The robustness of phase-locking in neurons with dendro-dendritic electrical coupling, J. Math. Biol., 68 (2014), pp. 303–340. · Zbl 1402.92117
[27] S. Y. Shvartsman, E. Schütz, R. Imbihl, and I. G. Kevrekidis, Dynamics on microcomposite catalytic surfaces: The effect of active boundaries, Phys. Rev. Lett., 83 (1999), 2857.
[28] S. Smale, A Mathematical model of two cells via Turing’s equation, in Some Mathematical Questions in Biology. V J. D. Cowan, ed., Ameri. Math. Soc. Lectures on Math. Life Sci. 6, AMS, Providence, RI, 1974, pp. 15–26.
[29] M. J. Ward, Asymptotics for strong localized perturbations: Theory and applications, Lecture notes, Fourth Winter School on Applied Mathematics, Hong Kong, 2010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.