zbMATH — the first resource for mathematics

Option pricing with linear market impact and nonlinear Black-Scholes equations. (English) Zbl 1417.91511
Summary: We consider a model of linear market impact, and address the problem of replicating a contingent claim in this framework. We derive a nonlinear Black-Scholes equation that provides an exact replication strategy.
This equation is fully nonlinear and singular, but we show that it is well posed, and we prove existence of smooth solutions for a large class of final payoffs, both for constant and local volatility. To obtain regularity of the solutions, we develop an original method based on Legendre transforms.
The close connections with the problem of hedging with gamma constraints [H. M. Soner and N. Touzi, SIAM J. Control Optim. 39, No. 1, 73–96 (2000; Zbl 0960.91036); Math. Finance 17, No. 1, 59–79 (2007; Zbl 1278.91151); with P. Cheridito, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22, No. 5, 633–666 (2005; Zbl 1078.91010)], with the problem of hedging under liquidity costs [U. Çetin et al., Finance Stoch. 14, No. 3, 317–341 (2010; Zbl 1226.91072)] are discussed. The optimal strategy and associated diffusion are related with the second-order target problems of [H. M. Soner et al., Ann. Appl. Probab. 23, No. 1, 308–347 (2013; Zbl 1293.60063)], and with the solutions of optimal transport problems by diffusions of [X. Tan and N. Touzi, Ann. Probab. 41, No. 5, 3201–3240 (2013; Zbl 1283.60097)].
We also derive a modified Black-Scholes formula valid for asymptotically small impact parameter, and finally provide numerical simulations as an illustration.

91G20 Derivative securities (option pricing, hedging, etc.)
35K55 Nonlinear parabolic equations
Full Text: DOI Euclid
[1] Abergel, F. and Loeper, G. (2016). Option pricing and hedging with liquidity costs and market impact. In Econophysics and Sociophysics: Recent Progress and Future Directions (F. Abergel, H. Aoyama, B. K. Chakrabarti, A. Chakraborti, N. Deo, D. Raina and I. Vodenska, eds.) 19–40. Springer, Cham.
[2] Almgren, R. A. (2005). Equity market impact. RISK 57–62.
[3] Barles, G. (1994). Solutions de Viscosité des équations de Hamilton–Jacobi. Mathématiques & Applications [Mathematics & Applications] 17. Springer, Paris.
[4] Bouchard, B., Loeper, G. and Zou, Y. (2016). Almost-sure hedging with permanent price impact. Finance Stoch.20 741–771. · Zbl 1369.91172
[5] Bouchard, B., Loeper, G. and Zou, Y. (2017). Hedging of covered options with linear market impact and gamma constraint. SIAM J. Control Optim.55 3319–3348. · Zbl 1415.91278
[6] Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math.44 375–417. · Zbl 0738.46011
[7] Çetin, U., Jarrow, R. A. and Protter, P. (2004). Liquidity risk and arbitrage pricing theory. Finance Stoch.8 311–341. · Zbl 1064.60083
[8] Çetin, U., Soner, H. M. and Touzi, N. (2010). Option hedging for small investors under liquidity costs. Finance Stoch.14 317–341. · Zbl 1226.91072
[9] Cheridito, P., Mete Soner, H., Touzi, N. and Victoir, N. (2007). Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Comm. Pure Appl. Math.60 1081–1110. · Zbl 1121.60062
[10] Cheridito, P., Soner, H. M. and Touzi, N. (2005). The multi-dimensional super-replication problem under gamma constraints. Ann. Inst. H. Poincaré Anal. Non Linéaire22 633–666. · Zbl 1078.91010
[11] Crandall, M. and Pierre, M. (1982). Regularizing effects for \(u_{t}+Aφ(u)=0\) in \(L^{1}\). J. Funct. Anal.45 194–212. · Zbl 0483.35076
[12] Crandall, M. G., Ishii, H. and Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 1–67. · Zbl 0755.35015
[13] Crandall, M. G. and Pierre, M. (1982). Regularizing effects for \(u_{t}=Δφ(u)\). Trans. Amer. Math. Soc.274 159–168. · Zbl 0508.35043
[14] Frey, R. Perfect option hedging for a large trader. Finance Stoch.2 115–141. · Zbl 0894.90017
[15] Frey, R. and Stremme, A. (1997). Market volatility and feedback effects from dynamic hedging. Math. Finance7 351–374. · Zbl 1020.91023
[16] Friedman, A. (1964). Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0144.34903
[17] Friedman, A. (1975). Stochastic Differential Equations and Applications, Vol. 1. Probability and Mathematical Statistics28. Academic Press, New York. · Zbl 0323.60056
[18] Gilbarg, D. and Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 224. Springer, Berlin. · Zbl 0562.35001
[19] Hsu, E. P. (2002). Stochastic Analysis on Manifolds. Graduate Studies in Mathematics38. Amer. Math. Soc., Providence, RI. · Zbl 0994.58019
[20] Kantorovich, L. V. (1948). On a problem of Monge. Uspekhi Mat. Nauk3 225–226.
[21] Kantorovich, L. V. (1942). On mass transportation. Dokl. Akad. Nauk SSSR37 227–229.
[22] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics113. Springer, New York. · Zbl 0734.60060
[23] Kohn, R. V. and Serfaty, S. (2010). A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations. Comm. Pure Appl. Math.63 1298–1350. · Zbl 1204.35070
[24] Lamberton, D., Pham, H. and Schweizer, M. (1998). Local risk-minimization under transaction costs. Math. Oper. Res.23 585–612. · Zbl 0994.91024
[25] Lieberman, G. M. (1996). Second Order Parabolic Differential Equations. World Scientific Co., Inc., River Edge, NJ. · Zbl 0884.35001
[26] Liu, H. and Yong, J. M. (2005). Option pricing with an illiquid underlying asset market. J. Econom. Dynam. Control29 2125–2156. · Zbl 1198.91210
[27] Loeper, G. (2006). The reconstruction problem for the Euler–Poisson system in cosmology. Arch. Ration. Mech. Anal.179 153–216. · Zbl 1089.85003
[28] Pascucci, A. (2011). PDE and Martingale Methods in Option Pricing, 1st ed. Springer, Milan. · Zbl 1214.91002
[29] Platen, E. and Schweizer, M. (1998). On feedback effects from hedging derivatives. Math. Finance8 67–84. · Zbl 0908.90016
[30] Rockafellar, R. T. (1997). Convex Analysis. Princeton Univ. Press, Princeton, NJ. Reprint of the 1970 original. · Zbl 0932.90001
[31] Schönbucher, P. J. and Wilmott, P. (2000). The feedback effect of hedging in illiquid markets. SIAM J. Appl. Math.61 232–272. · Zbl 1136.91407
[32] Soner, H. M. and Touzi, N. (2000). Superreplication under gamma constraints. SIAM J. Control Optim.39 73–96. · Zbl 0960.91036
[33] Soner, H. M. and Touzi, N. (2002). Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. (JEMS) 4 201–236. · Zbl 1003.49003
[34] Soner, H. M. and Touzi, N. (2007). Hedging under gamma constraints by optimal stopping and face-lifting. Math. Finance17 59–80. · Zbl 1278.91151
[35] Soner, H. M., Touzi, N. and Zhang, J. (2013). Dual formulation of second order target problems. Ann. Appl. Probab.23 308–347. · Zbl 1293.60063
[36] Tan, X. and Touzi, N. (2013). Optimal transportation under controlled stochastic dynamics. Ann. Probab.41 3201–3240. · Zbl 1283.60097
[37] Tóth, B., Eisler, Z., Lillo, F., Kockelkoren, J., Bouchaud, J.-P. and Farmer, J. D. (2012). How does the market react to your order flow? Quant. Finance12 1015–1024.
[38] Tychonoff, A. (1935). Théorèmes d’unicité pour l’équation de la chaleur. Rec. Math. Moscou42 199–216.
[39] Vázquez, J. L. (2006). Smoothing and decay estimates for nonlinear diffusion equations. In Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and Its Applications33. Oxford Univ. Press, Oxford.
[40] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics58. Amer. Math. Soc., Providence, RI. · Zbl 1106.90001
[41] Wang, X.-J. (2006). Schauder estimates for elliptic and parabolic equations. Chin. Ann. Math. Ser. B27 637–642. · Zbl 1151.35329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.