×

zbMATH — the first resource for mathematics

Some results on fractional factorial split-plot designs with multi-level factors. (English) Zbl 1183.62131
Summary: Fractional factorial split-plot (FFSP) designs have received much attention in recent years. In this article, the matrix representation for FFSP designs with multi-level factors is first developed, which is an extension of the one proposed by D. R. Bingham and R. R. Sitter [Ann. Stat. 27, No. 4, 1240–1255 (1999; Zbl 0957.62065)] for the two-level case. Based on this representation, periodicity results of maximum resolution and minimum aberration for such designs are derived. Differences between FFSP designs with multi-level factors and those with two-level factors are highlighted.

MSC:
62K15 Factorial statistical designs
15A99 Basic linear algebra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1360/04ys0069 · Zbl 1076.62080 · doi:10.1360/04ys0069
[2] DOI: 10.1016/j.spl.2004.06.016 · Zbl 1113.62343 · doi:10.1016/j.spl.2004.06.016
[3] DOI: 10.1007/s11425-006-0494-x · Zbl 1123.94010 · doi:10.1007/s11425-006-0494-x
[4] DOI: 10.1016/j.disc.2005.02.022 · Zbl 1094.62089 · doi:10.1016/j.disc.2005.02.022
[5] DOI: 10.2307/1270995 · doi:10.2307/1270995
[6] DOI: 10.1214/aos/1017938924 · Zbl 0957.62065 · doi:10.1214/aos/1017938924
[7] Bisgaard S., J. Qual. Technol. 32 pp 39– (2000)
[8] DOI: 10.2307/1270772 · Zbl 0869.62069 · doi:10.2307/1270772
[9] DOI: 10.1080/02664769200000001 · doi:10.1080/02664769200000001
[10] DOI: 10.1214/aos/1176348907 · Zbl 0770.62063 · doi:10.1214/aos/1176348907
[11] DOI: 10.1214/aos/1176348135 · Zbl 0725.62068 · doi:10.1214/aos/1176348135
[12] DOI: 10.1214/aos/1024691471 · Zbl 0927.62076 · doi:10.1214/aos/1024691471
[13] DOI: 10.1111/1467-9868.00164 · Zbl 0913.62072 · doi:10.1111/1467-9868.00164
[14] Clark J. B., Statist. Sinica 11 pp 537– (2001)
[15] Cornell J. A., J. Qual. Technol. 20 pp 2– (1988)
[16] DOI: 10.1093/biomet/87.1.193 · Zbl 0974.62059 · doi:10.1093/biomet/87.1.193
[17] DOI: 10.2307/1268198 · Zbl 0453.62063 · doi:10.2307/1268198
[18] Hedayat A. S., Orthogonal Arrays: Theory and Applications. (1999) · Zbl 0935.05001 · doi:10.1007/978-1-4612-1478-6
[19] DOI: 10.1093/biomet/89.4.893 · Zbl 1036.62060 · doi:10.1093/biomet/89.4.893
[20] DOI: 10.2307/1270532 · Zbl 1064.62552 · doi:10.2307/1270532
[21] Kulahci M., J. Qual. Technol. 38 pp 56– (2006)
[22] Letsinger J. D., J. Qual. Technol. 28 pp 381– (1996)
[23] Mukerjee R., Statist. Sinica 12 pp 885– (2002)
[24] DOI: 10.1016/j.jspi.2005.06.009 · Zbl 1099.62084 · doi:10.1016/j.jspi.2005.06.009
[25] DOI: 10.1007/s11425-006-2032-2 · Zbl 1106.62089 · doi:10.1007/s11425-006-2032-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.