×

zbMATH — the first resource for mathematics

Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer. (English) Zbl 1181.35172
The author considers the linearisation of the Navier-Stokes equations in a steady state posed in an infinite layer \(\mathbb R^m\times (0,a)\). Using the author’s previous result that this generates an analytic semigroup [Funkc. Ekvacioj, Ser. Int. 50, No. 2, 287–337 (2007; Zbl 1180.35413)], \(L^p\)-decay properties are established for all \(1\leq p \leq \infty\). In contrast to the mixed hyperbolic-parabolic behaviour for the problem posed in the whole space [D. Hoff and K. Zumbrun, Z. Angew. Math. Phys. 48, No. 4, 597–614 (1997; Zbl 0882.76074)], it is shown that the leading order part of the semigroup for large times is an \(m\)-dimensional heat semigroup.

MSC:
35Q30 Navier-Stokes equations
35B40 Asymptotic behavior of solutions to PDEs
76N15 Gas dynamics, general
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. Abe and Y. Shibata, On a resolvent estimate of the Stokes equation on an infinite layer, J. Math. Soc. Japan 55 (2003), no. 2, 469-497. · Zbl 1048.35052 · doi:10.2969/jmsj/1191419127
[2] T. Abe and Y. Shibata, On a resolvent estimate of the Stokes equation on an infinite layer. II. \lambda = 0 case, J. Math. Fluid Mech. 5 (2003), no. 3, 245-274. · Zbl 1162.76328
[3] H. Abels and M. Wiegner, Resolvent estimates for the Stokes operator on an infinite layer, Differential Integral Equations 18 (2005), no. 10, 1081-1110. · Zbl 1212.35343
[4] J. T. Beale and T. Nishida, Large-time behavior of viscous surface waves, in Recent topics in nonlinear PDE, II (Sendai, 1984), 1-14, North-Holland, Amsterdam. · Zbl 0642.76048
[5] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equa- tions of compressible flow, Indiana Univ. Math. J. 44 (1995), no. 2, 603-676. · Zbl 0842.35076 · doi:10.1512/iumj.1995.44.2003
[6] , Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys. 48 (1997), no. 4, 597-614. · Zbl 0882.76074 · doi:10.1007/s000330050049
[7] Y. Kagei, Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer, preprint, MHF Preprint Series, Kyushu University, MHF 2006-22.
[8] Y. Kagei and T. Kobayashi, On large-time behavior of solutions to the compressible Navier-Stokes equations in the half space in R3, Arch. Ration. Mech. Anal. 165 (2002), no. 2, 89-159. · Zbl 1016.35055 · doi:10.1007/s00205-002-0221-x
[9] , Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration. Mech. Anal. 177 (2005), no. 2, 231-330. · Zbl 1098.76062 · doi:10.1007/s00205-005-0365-6
[10] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1980. · Zbl 0435.47001
[11] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Ph. D. Thesis, Kyoto University, 1983.
[12] T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in the three-dimensional exterior domain, J. Differential Equations 184 (2002), no. 2, 587-619. · Zbl 1069.35051 · doi:10.1006/jdeq.2002.4158
[13] T. Kobayashi and Y. Shibata, Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations, Pacific J. Math. 207 (2002), no. 1, 199-234. · Zbl 1060.35104 · doi:10.2140/pjm.2002.207.199
[14] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 9, 337-342. i i i i · Zbl 0447.76053 · doi:10.3792/pjaa.55.337
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.