zbMATH — the first resource for mathematics

Biharmonic curves into quadrics. (English) Zbl 1322.58010
Biharmonic curves are special cases of biharmonic maps, which are maps between Riemannian manifolds that are critical points of the bienergy functional. An arclength parametrized curve \(\gamma: I\subset \mathbb{R}\to (N^n, h)\) is biharmonic if and only if it solves the \(4\)-th order differential equation \(\nabla^3_{\gamma'}\gamma'-\text{R}^N(\gamma', \nabla_{\gamma'}\gamma')\gamma'=0\). Clearly, any geodesic is a biharmonic curve.
In recent years, a lot of work has been done in classifying biharmonic curves in certain model spaces, see, e.g., R. Caddeo et al. [Int. J. Math. 12, No. 8, 867–876 (2001; Zbl 1111.53302); Mediterr. J. Math. 3, No. 3–4, 449–465 (2006; Zbl 1116.58013); Rend. Mat. Appl., VII. Ser. 21, No. 1–4, 143–157 (2001; Zbl 1049.58020)]; I. Dimitrić [Bull. Inst. Math., Acad. Sin. 20, No. 1, 53–65 (1992; Zbl 0778.53046)]; D. Fetcu [Ann. Mat. Pura Appl. (4) 189, No. 4, 591–603 (2010; Zbl 1201.53070)].
The paper under review studies biharmonic curves into quadrics \(Q_1=\{(x,y,z)|\; \frac{x^2}{a^2}\pm \frac{y^2}{b^2}\pm \frac{z^2}{c^2}=1\}\) (with a center) and \(Q_2=\{(x,y,z)|\; \frac{x^2}{a^2}\pm \frac{y^2}{b^2}=2z\}\) (without a center). The main results show that a quadric with a center admits a proper biharmonic curve if and only if it is \(\{(x,y,z)|\; \frac{x^2}{a^2}+ \frac{y^2}{a^2}+ \frac{z^2}{c^2}=1\}\), and in this case, the biharmonic curve is the intersection of the quadric with the ellipsoid \(\{(x,y,z)|\; \frac{x^2}{a^4}+ \frac{y^2}{a^4}+ \frac{z^2}{c^4}=\frac{1}{ac}\}\); there exists no proper biharmonic curve in a quadric without a center.

58E20 Harmonic maps, etc.
53C43 Differential geometric aspects of harmonic maps
Full Text: DOI arXiv
[1] DOI: 10.4134/JKMS.2008.45.2.393 · Zbl 1152.53049
[2] DOI: 10.1007/s00009-006-0090-x · Zbl 1116.58013
[3] Dimitric, Bull. Inst. Math. Acad. Sinica 20 pp 53– (1992)
[4] DOI: 10.1007/s10231-006-0026-x · Zbl 1141.53060
[5] Caddeo, Rend. Sem. Mat. Univ. Politec. Torino 62 pp 265– (2004)
[6] Monterde, Rend. Mat. Appl. 28 pp 123– (2008)
[7] Caddeo, Rend. Mat. Appl. 21 pp 143– (2001)
[8] Montaldo, Rev. Un. Mat. Argentina 47 pp 1– (2006)
[9] DOI: 10.1007/s10231-009-0126-5 · Zbl 1201.53070
[10] DOI: 10.1142/S0129167X01001027 · Zbl 1111.53302
[11] Laugwitz, Differential and Riemannian geometry (1965)
[12] Jiang, Chin. Ann. Math. A 7 pp 389– (1986)
[13] DOI: 10.1007/s00009-012-0195-3 · Zbl 1283.58012
[14] DOI: 10.1016/j.cagd.2005.06.005 · Zbl 1084.53004
[15] DOI: 10.1016/j.geomphys.2008.11.011 · Zbl 1167.53052
[16] Eells, Selected topics in harmonic maps (1983) · Zbl 0515.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.