×

zbMATH — the first resource for mathematics

The critical barrier for the survival of branching random walk with absorption. (English. French summary) Zbl 1263.60076
Author’s abstract: We study a branching random walk on \(\mathbb{R}\) with an absorbing barrier. The position of the barrier depends on the generation. In each generation, only the individuals born below the barrier survive and reproduce. Given a reproduction law, J. D. Biggins et al. [Ann. Appl. Probab. 1, No. 4, 573–581 (1991; Zbl 0749.60076)] determined whether a linear barrier allows the process to survive. In this paper, we refine their result: in the boundary case in which the speed of the barrier matches the speed of the minimal position of a particle in a given generation, we add a second order term \(an^{1/3}\) to the position of the barrier for the \(n\)th generation and find an explicit critical value \(a_{c}\) such that the process dies when \(a<a_{c}\) and survives when \(a>a_{c}\). We also obtain the rate of extinction when \(a<a_{c}\) and a lower bound for the population when it survives.

MSC:
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] L. Addario-Berry and N. Broutin. Total progeny in killed branching random walk. Probab. Theory Related Fields 151 (2011) 265-295. · Zbl 1230.60091 · doi:10.1007/s00440-010-0299-2
[2] E. Aïdékon. Tail asymptotics for the total progeny of the critical killed branching random walk. Electron. Commun. Probab. 15 (2010) 522-533. · Zbl 1226.60117 · emis:journals/EJP-ECP/_ejpecp/ECP/viewarticle44eb.html
[3] E. Aïdékon, Y. Hu and O. Zindy. The precise tail behavior of the total progeny of a killed branching random walk. Preprint, 2011. Available at [math.PR]. 1102.5536 · Zbl 1288.60105 · arxiv.org
[4] E. Aïdékon and B. Jaffuel. Survival of branching random walks with absorption. Stochastic Process. Appl. 121 (2011) 1901-1937. · Zbl 1236.60080 · doi:10.1016/j.spa.2011.04.006
[5] V. I. Arnol’d. Ordinary Differential Equations . MIT Press, Cambridge, MA, 1973. Translated and edited by R. A. Silverman. · Zbl 0296.34001
[6] J. D. Biggins and A. E. Kyprianou. Seneta-Heyde norming in the branching random walk. Ann. Probab. 25 (1997) 337-360. · Zbl 0873.60062 · doi:10.1214/aop/1024404291
[7] J. D. Biggins, B. D. Lubachevsky, A. Shwartz and A. Weiss. A branching random walk with barrier. Ann. Appl. Probab. 1 (1991) 573-581. · Zbl 0749.60076 · doi:10.1214/aoap/1177005839
[8] B. Derrida and D. Simon. The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. 78 (2007). Art. 60006, 6. · Zbl 1244.82071 · doi:10.1209/0295-5075/78/60006
[9] B. Derrida and D. Simon. Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J. Stat. Phys. 131 (2008) 203-233. · Zbl 1144.82321 · doi:10.1007/s10955-008-9504-4
[10] N. Gantert, Y. Hu and Z. Shi. Asymptotics for the survival probability in a killed branching random walk. Ann. Inst. H. Poincaré Probab. Stat. 47 (2011) 111-129. · Zbl 1210.60093 · doi:10.1214/10-AIHP362 · eudml:243873
[11] J. W. Harris and S. C. Harris. Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12 (2007) 81-92. · Zbl 1132.60059 · doi:10.1214/ECP.v12-1259 · eudml:128570
[12] H. Kesten. Branching Brownian motion with absorption. Stochastic Processes Appl. 7 (1978) 9-47. · Zbl 0383.60077 · doi:10.1016/0304-4149(78)90035-2
[13] A. A. Mogul’skii. Small deviations in the space of trajectories. Theory Probab. Appl. 19 (1975) 726-736. · Zbl 1122.03015
[14] R. Pemantle. Search cost for a nearly optimal path in a binary tree. Ann. Appl. Probab. 19 (2009) 1273-1291. · Zbl 1176.68093 · doi:10.1214/08-AAP585
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.