×

zbMATH — the first resource for mathematics

A general methodology for deriving shear constrained Reissner-Mindlin plate elements. (English) Zbl 0761.73111
Summary: The necessary requirements for the good behaviour of shear constrained Reissner-Mindlin plate elements for thick and thin plate situations are re-interpreted and a simple explicit form of the substitute shear strain matrix is obtained. This extends the previous work of the authors [E. Oñate, R. L. Taylor and O. C. Zienkiewicz, in G. Kuhn and H. Mang (eds.), Discretization methods in structural mechanics (1990; Zbl 0707.00025); O. C. Zienkiewicz, R. L. Taylor, P. Papadopoulos and E. Oñate, Comput. Struct. 35, No. 4, 505-522 (1990; Zbl 0729.73227)]. The general methodology is applied to the reformulation of some well known quadrilateral plate elements and some new triangular and quadrilateral plate elements which show promising features. Some examples of the good behaviour of these elements are given.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aalto, Commun. appl. numer. methods 4 pp 231– (1988)
[2] Ahmad, Int. j. numer. methods eng. 2 pp 419– (1970)
[3] and , ’A uniformly accurate finite element method for the Mindlin-Reissner plate’, Preprint 307, Institute for Mathematics and its Applications, University of Minnesota, 1987.
[4] Bathe, Comp. Struct. 32 pp 797– (1989)
[5] Bathe, Int. j. numer. methods eng. 21 pp 367– (1985)
[6] Batoz, Int. j. numer. methods eng. 15 pp 1771– (1980)
[7] and , ’Revue et bilan des elements de plaque de type Kirchhoff discret’ in et al. (eds.), Calcul des Structures et Inteligence Artificielle, Pluralis Editeur, 1988.
[8] Batoz, Int. j. numer methods eng. 28 pp 533– (1989)
[9] Batoz, Int. j. numer. methods eng. 18 pp 1655– (1982)
[10] Brezzi, Int. j. numer. methods eng. 28 pp 1787– (1989)
[11] Crisfield, Comp. Methods Appl. Mech. Eng. 38 pp 93– (1983)
[12] Dvorkin, Eng. Comp. 1 pp 77– (1984)
[13] Hinton, Comp. Struct. 23 pp 409– (1986)
[14] Hughes, Int. j. numer. methods eng. 11 pp 1529– (1977)
[15] Hughes, J. Appl. Mech. 46 pp 587– (1981)
[16] Malkus, Comp. Methods Appl. Mech. Eng. 15 pp 63– (1978)
[17] Mindlin, J. Appl. Mech. 18 pp 31– (1951)
[18] and , ’Consistent formulation of shear constrained Reissner-Mindlin plate elements’, in and (eds.), Discretization Methods in Structural Mechanics, Springer-Verlag, Berlin, 1990. · Zbl 0728.73071
[19] Papadopoulus, Int. j. numer. methods eng. 30 pp 1029– (1990)
[20] Prathap, Int. j. numer. methods eng. 26 pp 1693– (1988)
[21] Pugh, J. Appl. Mech. 12 pp 1059– (1978)
[22] Reissner, J. Appl. Mech. 12 pp 69– (1945)
[23] Saleeb, Int. j. numer. methods eng. 24 pp 1123– (1987)
[24] Saleeb, Int. j. numer. methods eng. 26 pp 1101– (1988)
[25] Stolarski, Int. j. numer. methods eng. 28 pp 2323– (1989)
[26] and , Theory of Plates and Shells, McGraw-Hill, New York, 1959.
[27] Zienkiewicz, Commun. appl. numer. methods 3 pp 301– (1987)
[28] Zienkiewicz, Int. j. numer. methods eng. 26 pp 1169– (1988)
[29] Zienkiewicz, Int. j. numer. methods eng. 23 pp 1873– (1986)
[30] and , The Finite Element Method, 4th edn. McGraw-Hill, London. Vol. I, 1989, Vol. II, 1991.
[31] Zienkiewicz, Comp. Struct. 35 pp 505– (1990)
[32] Zienkiewicz, Int. j. numer methods eng. 3 pp 275– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.