zbMATH — the first resource for mathematics

A mathematical method for the force and energetics in competitive running. (English) Zbl 0782.92007
The aim of this paper is to study a relatively simple optimization model for the force, energetics and velocity profile in running. The model, an extension of the previous formulation by the author in Math. Methods Appl. Sci. 9, 298-311 (1987; Zbl 0626.49009), is made up of three submodels, which take account of the biomechanics, the energetics and the optimization.
From the biomechanical point of view, a more general and realistic expression for the resistance is used. The model for the energetics, an extension of the hydraulic model of R. Margaria [Biomechanics and energetics of muscular exercise. Oxford (1976)] and R. H. Morton [J. Math. Biol. 28, No. 1, 49-64 (1990; Zbl 0717.92012)], uses three vessels for the three sources of muscular energy (phosphagen, glycolysis and oxidation of glucose and lipids), includes a maximum glycolytic rate and takes into account the finiteness of the third vessel, and allows to consider both long and short distance runs. The key parameters of this piecewise linear, three-compartment model are determined on the basis of physiological data and the model yields a reasonable good fit to the data from world records.
Reviewer: D.Jou (Ballaterra)

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C10 Biomechanics
49N70 Differential games and control
49N75 Pursuit and evasion games
49J15 Existence theories for optimal control problems involving ordinary differential equations
Full Text: DOI
[1] Ballreich, R.: Weg and Zeitmerkmale von Sprintbewegungen. Berlin: Bartels and Warnitz Vlg 1969
[2] Baumann, W.: Kinematic and dynamic characteristics of the sprint start. Biomechanics VB. (Int. Ser. Biomech., vol. Vb, pp. 194-199) Baltimore: University Park Press 1973
[3] Behncke, H.: Optimization models for the force and energy in competitive sports. Math. Meth. Appl. Sci. 9, 298-311 (1987) · Zbl 0626.49009 · doi:10.1002/mma.1670090123
[4] Cavagna, G. A., Kaneko, M.: Mechanical efficiency in level walking and running. J. Phys. 268, 467-481 (1977)
[5] Davies, C. T. M.: Wind resistance and assistance in running. Med. Sport 13, 199-212 (1981)
[6] di Prampero, P. E., Pifiera Limas, F., Sassi, G.: Maximal muscular power, aerobic and anaerobic in 116 athletes performing at the 19th Olympic Games in Mexico. Ergonomics 13, 665-674 (1970) · doi:10.1080/00140137008931192
[7] Filipov, A. F.: On certain questions in optimal control. Siam J. Control 2, 76-84 (1962) · Zbl 0139.05102
[8] Fukunaga, T., Matsuo, A., Yuasa, K., Fujimatsu, H., Asahina, K.: Mechanical power output in running. Biomechanics VIb. (Int. Ser. Biomech., vol VIb) Baltimore: University Park Press 1978
[9] Heck, H.: Laktat in der Leistungsdiagnostik. Schorndorf: Hoffmann 1990
[10] Hirvonen, J., Rehunen, S., Rusko, H., Härkönen, M.: Breakdown of high energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur. J. Appl. Physiol. 56, 253-259 (1987) · doi:10.1007/BF00690889
[11] Hellmann, W., Hettinger, T.: Sportmedizin - Arbeits- und Trainingsgrundlagen. Stuttgart New York: Schattauer 1980
[12] Keller, J. B.: A theory of competitive running. Phys. Today 26, 43-47 (1973)
[13] Kindermann, W., Keul, J.: Anaerobe Energiebereitstellung im Hochleistungssport. Schorndorf: Hoffmann 1977
[14] Knuttgen, H. G., Vogel, J. A., Poortmans, J.: Biochemistry of Exercise. In: Proc. of the Fifth Intern. Symposium on the Biochemistry of Exercise, Boston 1982. Champaign, IL: Human Kinetics Publ. Inc. 1982
[15] Mader, A.: Eine Theorie zur Berechnung der Dynamik und des steady state von Phosphorylierungszustand und Stoffwechselaktivität der Muskelzelle als Folge des Energiebedarfs. Habilitationsschrift -Deutsche Sporthochschule Köln (1984)
[16] Margaria, R.: Biomechanics and energetics of muscular exercises. Oxford: Clarendon Press 1976
[17] McGilvery, R. W., Murray, T.: Calculated equilibria of phosphocreatine and adenosin phosphates during utilization of high energy phosphate by muscle. J. Biol. Chem. 18, 5845-5850 (1974)
[18] Morton, R. H.: A three component model of human bioenergetics. J. Math. Biol. 24, 451-466 (1986) · Zbl 0602.92005 · doi:10.1007/BF01236892
[19] Morton, R. H.: Modelling human power and endurance. J. Math. Biol. 28, 49-64 (1990) · Zbl 0717.92012 · doi:10.1007/BF00171518
[20] Morton, R. H.: Model theory equations for maximal power and endurance. (Preprint 1988)
[21] Neustadt, L.: Optimization. Princeton: Princeton University Press 1976 · Zbl 0353.49003
[22] Taylor, C. R., Schmidt Nielsen, K., Raab, J. L.: Scaling of energetic cost of running to body size in mammals. Am. J. Physiol. 219, 1104-1107 (1970)
[23] Ward-Smith, A. J.: A mathematical theory of running, based on the first law of thermodynamics and its application to the performance of world class athletes. J. Biomech. 18, 337-349 (1985) · doi:10.1016/0021-9290(85)90289-1
[24] Zaciorski, V. M.: Biomechanische Grundlagen der Ausdauer. Berlin: Sportverlag 1987
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.