Don, Wai Sun; Gao, Zhen; Li, Peng Hybrid Fourier-continuation method and WENO-Z finite difference scheme for multi-dimensional detonation structure simulations. (English) Zbl 1422.65151 Pure Appl. Math. Q. 14, No. 1, 27-55 (2018). MSC: 65M06 35L65 76M20 80A25 35Q79 76L05 35L67 PDF BibTeX XML Cite \textit{W. S. Don} et al., Pure Appl. Math. Q. 14, No. 1, 27--55 (2018; Zbl 1422.65151) Full Text: DOI
Maciel, Edisson Sávio de Góes; de Andrade, Cláudia Regina Comparison among unstructured TVD, ENO and UNO schemes in two- and three-dimensions. (English) Zbl 1426.76400 Appl. Math. Comput. 321, 130-175 (2018). MSC: 76M12 65M08 76Bxx 76M20 76L05 65M06 PDF BibTeX XML Cite \textit{E. S. de G. Maciel} and \textit{C. R. de Andrade}, Appl. Math. Comput. 321, 130--175 (2018; Zbl 1426.76400) Full Text: DOI
Gao, Zhen; Wen, Xiao; Don, Wai Sun Enhanced robustness of the hybrid compact-WENO finite difference scheme for hyperbolic conservation laws with multi-resolution analysis and Tukey’s boxplot method. (English) Zbl 1381.65065 J. Sci. Comput. 73, No. 2-3, 736-752 (2017). MSC: 65M06 35L65 76B15 76N15 76M20 PDF BibTeX XML Cite \textit{Z. Gao} et al., J. Sci. Comput. 73, No. 2--3, 736--752 (2017; Zbl 1381.65065) Full Text: DOI
Niu, Yanpo; Gao, Zhen; Don, Wai Sun; Xie, Shusen; Li, Peng Hybrid compact-WENO finite difference scheme for detonation waves simulations. (English) Zbl 1352.65259 Kirby, Robert M. (ed.) et al., Spectral and high order methods for partial differential equations, ICOSAHOM 2014. Selected papers from the ICOSAHOM conference, June 23–27, 2014, Salt Lake City, UT, USA. Cham: Springer (ISBN 978-3-319-19799-9/hbk; 978-3-319-19800-2/ebook). Lecture Notes in Computational Science and Engineering 106, 179-187 (2015). Reviewer: Irina V. Konopleva (Ul’yanovsk) MSC: 65M06 35L67 PDF BibTeX XML Cite \textit{Y. Niu} et al., Lect. Notes Comput. Sci. Eng. 106, 179--187 (2015; Zbl 1352.65259) Full Text: DOI
Li, Peng; Gao, Zhen; Don, Wai-Sun; Xie, Shusen Hybrid Fourier-continuation method and weighted essentially non-oscillatory finite difference scheme for hyperbolic conservation laws in a single-domain framework. (English) Zbl 1326.65109 J. Sci. Comput. 64, No. 3, 670-695 (2015). MSC: 65M06 35L65 76L05 76M20 PDF BibTeX XML Cite \textit{P. Li} et al., J. Sci. Comput. 64, No. 3, 670--695 (2015; Zbl 1326.65109) Full Text: DOI
Gao, Zhen; Don, Wai Sun Mapped hybrid central-WENO finite difference scheme for detonation waves simulations. (English) Zbl 1271.65121 J. Sci. Comput. 55, No. 2, 351-371 (2013). MSC: 65M06 35L67 PDF BibTeX XML Cite \textit{Z. Gao} and \textit{W. S. Don}, J. Sci. Comput. 55, No. 2, 351--371 (2013; Zbl 1271.65121) Full Text: DOI
Yang, Jaw-Yen; Muljadi, Bagus Putra Simulation of shock wave diffraction over \(90^\circ \) sharp corner in gases of arbitrary statistics. (English) Zbl 1231.82057 J. Stat. Phys. 145, No. 6, 1674-1688 (2011). MSC: 82C40 82C70 82-08 65M06 35Q35 35Q20 76L05 35L67 PDF BibTeX XML Cite \textit{J.-Y. Yang} and \textit{B. P. Muljadi}, J. Stat. Phys. 145, No. 6, 1674--1688 (2011; Zbl 1231.82057) Full Text: DOI
Geiser, Jürgen Mobile and immobile fluid transport: coupling framework. (English) Zbl 1444.76104 Int. J. Numer. Methods Fluids 65, No. 8, 877-922 (2011). MSC: 76S05 65M06 76M12 PDF BibTeX XML Cite \textit{J. Geiser}, Int. J. Numer. Methods Fluids 65, No. 8, 877--922 (2011; Zbl 1444.76104) Full Text: DOI
Geiser, Jürgen Discretization methods with analytical solutions for a convection-reaction equation with higher-order discretizations. (English) Zbl 1157.65437 Int. J. Comput. Math. 86, No. 1, 163-183 (2009). MSC: 65M06 PDF BibTeX XML Cite \textit{J. Geiser}, Int. J. Comput. Math. 86, No. 1, 163--183 (2009; Zbl 1157.65437) Full Text: DOI
Donat Beneito, R.; Martínez Gavara, A. A ‘TVD-like’ scheme for conservation laws with source terms. (English) Zbl 1188.65116 Kunisch, Karl (ed.) et al., Numerical mathematics and advanced applications. Proceedings of ENUMATH 2007, the 7th European conference on numerical mathematics and advanced applications, Graz, Austria, September 10–14, 2007. Berlin: Springer (ISBN 978-3-540-69776-3/hbk). 265-272 (2008). MSC: 65M06 65L06 PDF BibTeX XML Cite \textit{R. Donat Beneito} and \textit{A. Martínez Gavara}, in: Numerical mathematics and advanced applications. Proceedings of ENUMATH 2007, the 7th European conference on numerical mathematics and advanced applications, Graz, Austria, September 10--14, 2007. Berlin: Springer. 265--272 (2008; Zbl 1188.65116) Full Text: DOI
Costa, Bruno; Don, Wai Sun Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws. (English) Zbl 1123.65306 J. Comput. Phys. 224, No. 2, 970-991 (2007). MSC: 65M06 PDF BibTeX XML Cite \textit{B. Costa} and \textit{W. S. Don}, J. Comput. Phys. 224, No. 2, 970--991 (2007; Zbl 1123.65306) Full Text: DOI
Lie, Knut-Andreas; Noelle, Sebastian; Rosenbaum, Wolfram On the resolution and stability of central difference schemes. (English) Zbl 1063.65092 Herbin, Raphaéle (ed.) et al., Finite volumes for complex applications III. Problems and perspectives. Papers from the 3rd symposium of finite volumes for complex applications, Porquerolles, France, June 24–28, 2002. London: Hermes Penton Science (ISBN 1-9039-9634-1/pbk). 793-800 (2002). MSC: 65M12 65M06 35L65 65M50 PDF BibTeX XML Cite \textit{K.-A. Lie} et al., in: Finite volumes for complex applications III. Problems and perspectives. Papers from the 3rd symposium of finite volumes for complex applications, Porquerolles, France, June 24--28, 2002. London: Hermes Penton Science. 793--800 (2002; Zbl 1063.65092)
Barakhnin, V. B. TVD scheme of second-order approximation on a nonstationary adaptive grid for hyperbolic systems. (English) Zbl 0991.65084 Russ. J. Numer. Anal. Math. Model. 16, No. 1, 1-17 (2001). MSC: 65M06 76B15 76N15 76M20 65M12 35L65 PDF BibTeX XML Cite \textit{V. B. Barakhnin}, Russ. J. Numer. Anal. Math. Model. 16, No. 1, 1--17 (2001; Zbl 0991.65084) Full Text: DOI
Barakhnin, V. B. On application of a TVD scheme on moving adaptive grids for solving gas dynamics problems. (Russian) Zbl 1005.76065 Din. Splosh. Sredy 116, 9-13 (2000). Reviewer: V.I.Pinchukov (Novosibirsk) MSC: 76M20 76N15 65M06 PDF BibTeX XML Cite \textit{V. B. Barakhnin}, Din. Splosh. Sredy 116, 9--13 (2000; Zbl 1005.76065)
Ismail, Hassan N. A.; Zaid, Fatma A. A. Flux limiters fourth and sixth order high resolution method for hyperbolic conservation laws. (English) Zbl 0965.65107 Int. J. Comput. Math. 75, No. 1, 71-96 (2000). Reviewer: Ll.G.Chambers (Bangor) MSC: 65M06 35L65 65M12 PDF BibTeX XML Cite \textit{H. N. A. Ismail} and \textit{F. A. A. Zaid}, Int. J. Comput. Math. 75, No. 1, 71--96 (2000; Zbl 0965.65107) Full Text: DOI
Harten, Ami High resolution schemes for hyperbolic conservation laws. (Reprint). (English) Zbl 0890.65096 J. Comput. Phys. 135, No. 2, 260-278 (1997). MSC: 65M06 65-03 01A75 65M12 35L65 PDF BibTeX XML Cite \textit{A. Harten}, J. Comput. Phys. 135, No. 2, 260--278 (1997; Zbl 0890.65096) Full Text: DOI
Lax, Peter Introduction to “High resolution schemes for hyperbolic conservation laws”. (English) Zbl 0890.65095 J. Comput. Phys. 135, No. 2, 259 (1997). MSC: 65M06 65M12 35L65 PDF BibTeX XML Cite \textit{P. Lax}, J. Comput. Phys. 135, No. 2, 259, Art. No. CP975725 (1997; Zbl 0890.65095) Full Text: DOI
Ansorge, R. Entropy conditions and their numerical analogues for conservation laws. (English) Zbl 0811.65069 Kowalski, Jan Krzysztof (ed.) et al., Numerical analysis and mathematical modelling. Warszawa: Polish Academy of Sciences, Inst. of Mathematics, Banach Cent. Publ. 29, 51-63 (1994). Reviewer: K.Finck von Finckenstein (Darmstadt) MSC: 65M06 65M12 35L65 PDF BibTeX XML Cite \textit{R. Ansorge}, Banach Cent. Publ. 29, 51--63 (1994; Zbl 0811.65069)
Chen, Shaojun Harten solution for one-dimensional unsteady equation. (English) Zbl 0777.76058 Appl. Math. Mech., Engl. Ed. 14, No. 6, 545-554 (1993). MSC: 76M20 76L05 PDF BibTeX XML Cite \textit{S. Chen}, Appl. Math. Mech., Engl. Ed. 14, No. 6, 545--554 (1993; Zbl 0777.76058) Full Text: DOI
Wang, J. C. T.; Widhopf, G. F. A high-resolution TVD finite volume scheme for the Euler equations in conservation form. (English) Zbl 0678.76057 J. Comput. Phys. 84, No. 1, 145-173 (1989). MSC: 76H05 76M99 PDF BibTeX XML Cite \textit{J. C. T. Wang} and \textit{G. F. Widhopf}, J. Comput. Phys. 84, No. 1, 145--173 (1989; Zbl 0678.76057) Full Text: DOI
Vila, J. P. High-order schemes and entropy condition for nonlinear hyperbolic systems of conservation laws. (English) Zbl 0644.65058 Math. Comput. 50, No. 181, 53-73 (1988). Reviewer: F.v.Finckenstein MSC: 65M06 65M12 35L65 PDF BibTeX XML Cite \textit{J. P. Vila}, Math. Comput. 50, No. 181, 53--73 (1988; Zbl 0644.65058) Full Text: DOI
Einfeldt, Bernd On Godunov-type methods for gas dynamics. (English) Zbl 0642.76088 SIAM J. Numer. Anal. 25, No. 2, 294-318 (1988). MSC: 76N15 65M06 35L67 PDF BibTeX XML Cite \textit{B. Einfeldt}, SIAM J. Numer. Anal. 25, No. 2, 294--318 (1988; Zbl 0642.76088) Full Text: DOI
Cooke, C. H. Application of an explicit TVD scheme for unsteady, axisymmetric, muzzle brake flow. (English) Zbl 0618.76068 Int. J. Numer. Methods Fluids 7, 621-633 (1987). MSC: 76L05 80A32 76N15 76M99 PDF BibTeX XML Cite \textit{C. H. Cooke}, Int. J. Numer. Methods Fluids 7, 621--633 (1987; Zbl 0618.76068) Full Text: DOI
Cooke, C. H. On operator splitting of the Euler equations consistent with Harten’s second-order accurate TVD scheme. (English) Zbl 0637.76059 Numer. Methods Partial Differ. Equations 1, 315-327 (1985). MSC: 76L05 76M99 35Q30 35L65 PDF BibTeX XML Cite \textit{C. H. Cooke}, Numer. Methods Partial Differ. Equations 1, 315--327 (1985; Zbl 0637.76059) Full Text: DOI
Yee, H. C.; Warming, R. F.; Harten, A. Implicit total variation diminishing (TVD) schemes for steady-state calculations. (English) Zbl 0631.76087 J. Comput. Phys. 57, 327-360 (1985). MSC: 76N15 76L05 76M99 PDF BibTeX XML Cite \textit{H. C. Yee} et al., J. Comput. Phys. 57, 327--360 (1985; Zbl 0631.76087) Full Text: DOI
Goodman, Jonathan B.; LeVeque, Randall J. On the accuracy of stable schemes for 2D scalar conservation laws. (English) Zbl 0592.65058 Math. Comput. 45, 15-21 (1985). Reviewer: F.v.Finckenstein MSC: 65M12 65M06 35L65 76N15 PDF BibTeX XML Cite \textit{J. B. Goodman} and \textit{R. J. LeVeque}, Math. Comput. 45, 15--21 (1985; Zbl 0592.65058) Full Text: DOI