zbMATH — the first resource for mathematics

Spectral method solution of the Stokes equations on nonstaggered grids. (English) Zbl 0721.76057
Summary: The Stokes equations are solved using spectral methods with staggered and nonstaggered grids. Numerous ways to avoid the problem of spurious pressure modes are presented, including new techniques using the pseudospectral method and a method solving the weak form of the governing equations [a variation on the “spectral element” method developed by A. T. Patera, ibid. 54, 468-488 (1984; Zbl 0535.76035)]. The pseudospectral methods using nonstaggered grids are simpler to implement and have comparable or better accuracy than the staggered grid formulations. Three test cases are presented: a formulation with an exact solution, a formulation with homogeneous boundary conditions, and the driven cavity problem. The solution accuracy is shown to be greatly improved for the driven cavity problem when the analytical solution of the singular flow behavior in the upper corners is separated from the computational solution.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI
[1] Batchelor, G.K., An introduction to fluid dynamics, (1967), Cambridge Univ. Press London · Zbl 0152.44402
[2] Bernardi, C.; Maday, Y., Int. J. numer. methods fluids, 8, 537, (1988)
[3] Bernardi, C.; Maday, Y.; Metivet, B., Rech. aerosp., 1987, No. 1, 1, (1987)
[4] Bernardi, C.; Maday, Y.; Metivet, B., Numer. math., 51, 655, (1987), Fasc. 6
[5] Bernardi, C.; Canuto, C.; Maday, Y., SIAM J. numer. anal., 25, No. 6, 1237, (1988)
[6] Boyd, J.P., Chebyshev and Fourier spectral methods, (1989), Springer-Verlag Berlin/Heidelberg
[7] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1988), Springer-Verlag New York · Zbl 0658.76001
[8] Gottlieb, D.; Hussaini, M.Y.; Orszag, S.A., Spectral methods for partial differential equations, (1984), Soc. Indus. Appl. Math Philadelphia
[9] Madam, Y.; Patera, A.T., Spectral element methods for the incompressible Navier-Stokes equations, ()
[10] Montigny-Rannou, F.; Morchgisne, Y., Int. J. numer. methods fluids, 7, 175, (1987)
[11] Morchoisne, Y., Résolution des équations de Navier-Stokes par une méthode spectrale dsous-domaines, ()
[12] Orszag, S.A.; Israeli, M.; DeVille, M.O., J. sci. comput., 1, No. 1, 75, (1986)
[13] Patankar, S.V., Numerical heat transfer and fluid flow, (1980), Hemisphere Washington, DC · Zbl 0595.76001
[14] Patera, A.T., J. comput. phys., 54, 468, (1984)
[15] Peyret, R.; Taylor, T.D., Computational methods for fluid flow, (1983), Springer-Verlag New York · Zbl 0514.76001
[16] Ronquist, E.M., Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations, (), (unpublished)
[17] Ronquist, E.M.; Patera, A.T., Int. J. numer. methods eng., 24, 2273, (1987)
[18] Schultz, W.W.; Lee, N.Y.; Boyd, J., J. sci. comput., 4, 1, (1989)
[19] Shin, T.M.; Ren, A.L., Numer. heat transfer, 7, 413, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.