×

zbMATH — the first resource for mathematics

Remarks on BEC on graphs. (English) Zbl 1376.82007

MSC:
82B10 Quantum equilibrium statistical mechanics (general)
81R15 Operator algebra methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Araki, H.; Shiraishi, M., On quasifree states of the canonical commutation relations. I, Publ. Res. Inst. Math. Sci., 7, 105-120, (197172) · Zbl 0239.46066
[2] Araki, H., On quasifree states of the canonical commutation relations. II, Publ. Res. Inst. Math. Sci., 7, 121-152, (197172) · Zbl 0239.46067
[3] Araki, H.; Yamagami, S., On quasi-equivalence of quasifree states of the canonical commutation relations, Publ. Res. Inst. Math. Sci., 18, 2, 703-758, (1982) · Zbl 0505.46052
[4] Bratteli, O.; Robinson, D., Operator Algebras and Quantum Statistical Mechanics I, (1986), Springer
[5] Bratteli, O.; Robinson, D., Operator Algebras and Quantum Statistical Mechanics II, (1997), Springer
[6] Fidaleo, F.; Guido, D.; Isola, T., Bose-Einstein condensation on inhomogeneous amenable graphs, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14, 2, 149-197, (2011) · Zbl 1223.82012
[7] Fidaleo, F., Harmonic analysis on Cayley trees II: the Bose-Einstein condensation, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 4, 32, (2012) · Zbl 1273.82011
[8] Fidaleo, F., Harmonic analysis on inhomogeneous amenable networks and the Bose-Einstein condensation, J. Stat. Phys., 160, 3, 715-759, (2015) · Zbl 1362.82053
[9] Honegger, R., Decomposition of positive sesquilinear forms and the central decomposition of gauge-invariant quasi-free states on the Weyl-algebra, Z. Naturforsch. A, 45, 1, 17-28, (1990) · Zbl 0807.46088
[10] Honegger, R.; Rapp, A., General Glauber coherent states on the Weyl algebra and their phase integrals, Phys. A, 167, 3, 945-961, (1990)
[11] Lewis, J. T.; Pulè, J. V., The equilibrium states of the free boson gas, Comm. Math. Phys., 36, 1-18, (1974)
[12] Manuceau, J.; Verbeure, A., Quasi-free states of the C.C.R.-algebra and Bogoliubov transformations, Comm. Math. Phys., 9, 293-302, (1968) · Zbl 0167.55902
[13] Manuceau, J.; Rocca, F.; Testard, D., On the product form of quasi-free states, Comm. Math. Phys., 12, 43-57, (1969) · Zbl 0172.27303
[14] Matsui, T., BEC of free bosons on networks, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9, 1, 1-26, (2006) · Zbl 1093.82003
[15] Pulé, J. V.; Verbeure, A.; Zagrebnov, V. A., On nonhomogeneous Bose condensation, J. Math. Phys., 46, 8, 8, (2005) · Zbl 1110.82005
[16] Rocca, F.; Sirugue, M.; Testard, D., On a class of equilibrium states under the kubo-martin-Schwinger condition. II. bosons, Comm. Math. Phys., 19, 119-141, (1970)
[17] Simon, B., Functional Integration and Quantum Physics, (2005), AMS Chelsea Publishing, Providence, RI · Zbl 1061.28010
[18] van Daele, A., Quasi-equivalence of quasi-free states on the Weyl algebra, Comm. Math. Phys., 21, 171-191, (1971) · Zbl 0211.44002
[19] Yamagami, S., Geometry of quasi-free states of CCR algebras, Internat. J. Math., 21, 7, 875-913, (2010) · Zbl 1200.46061
[20] Yamagami, S., Geometry of coherent states of CCR algebras, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 2, 9, (2012) · Zbl 1259.46060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.