zbMATH — the first resource for mathematics

Highest weights, projective geometry, and the classical limit. I: Geometrical aspects and the classical limit. (English) Zbl 0948.22015
It is a classical result that the orbit \(\Phi\) of any highest weight vector \(v\) of a semi-simple compact Lie group \(G\) is an algebraic variety. In a previous paper [Q. J. Math. Oxford, II. Ser. 33, 91–96 (1982; Zbl 0471.22015)] the author proved the following:
Theorem: For any irreducible \(G\)-module \(V\) a vector \(v \in V\) is a highest weight vector for some maximal torus subgroup of \(G\) if and only if the cyclic \(G\)-submodule of \(V \otimes V\) generated by \(v \otimes v\) is irreducible.
Another, quite different, proof of this theorem was given by W. Lichtenstein [Proc. Am. Math. Soc. 84, 605–608 (1982; Zbl 0501.22017)]. The theorem implies that these orbits \(\Phi\) are even homogeneous quadratic varieties (if \(p\) is the projection onto the irreducible submodule of \(V \otimes V\) whose highest weight vector is double that of \(V\), the vectors of \(\Phi\) satisfy the quadratic equation \(p(v \otimes v) = v \otimes v\)).
The paper under review contains yet another proof of the above theorem which is more elementary than the other proofs. Moreover, the automorphism group \(\Gamma\) of \(\Phi\) is calculated. It turns out that in most cases the connected component of \(\Gamma\) is just the complexification \(G_{\mathbb C}\) of \(G\), which obviously leaves invariant \(\Phi\). Many beautiful geometrical examples are included throughout the manuscript and the theorem is extended to certain types of algebras like Clifford algebras and to quantum groups.
Other relationships to quantisation and to the classical limit are also exploited [see e.g. E. Lieb, Commun. Math. Phys. 31, 327–340 (1973) and B. Simon, Commun. Math. Phys. 71, 46–91 (1980; Zbl 0436.22012)].

22E46 Semisimple Lie groups and their representations
51A50 Polar geometry, symplectic spaces, orthogonal spaces
81S10 Geometry and quantization, symplectic methods
15A66 Clifford algebras, spinors
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
Full Text: DOI
[1] Atiyah, M.F., Convexity and commuting Hamiltonians, Bull. London math. soc., 14, 1-15, (1982) · Zbl 0482.58013
[2] R.J. Baston, M.G. Eastwood, The Penrose Transform, Oxford, University Press, Oxford, 1990. · Zbl 0726.58004
[3] I.N. Bernstein, I.M. Gel’fand, S.I. Gel’fand, Schubert cells and cohomology of the spaces G/P, Russian Math. Surveys 28 (3) (1973) 1-26.
[4] I.N. Bernstein, I.M. Gel’fand, S.I. Gel’fand, Differential operators on the base affine space and a study of \(g\)-modules, in: I.M. Gel’fand (Ed.), Lie Groups and their Representations, Adam Hilger, Bristol, 1975.
[5] R. Bott, The index theorem for homogeneous differential operators, in: S.S. Cairns (Ed.), Differential and Combinatorial Geometry, Princeton University Press, Princeton, NJ, 1965. · Zbl 0173.26001
[6] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
[7] Bowes, D.; Hannabuss, K.C., Weyl quantization and star products, J. geom. phys., 22, 316-348, (1997) · Zbl 0882.58015
[8] F.E. Burstall, J.H. Rawnsley, Twistor Theory and Riemannian Symmetric Spaces, Lecture Notes in Mathematics, vol. 1424, Springer, Berlin, 1992. · Zbl 0788.53045
[9] Cahen, M.; Gutt, S.; Rawnsley, J.H., Quantization of Kähler manifolds II, Trans. amer. math. soc., 337, 73-98, (1993) · Zbl 0788.53062
[10] Cahen, M.; Gutt, S.; Rawnsley, J.H., Quantization of Kähler manifolds III, Lett. math. phys., 30, 291-305, (1994) · Zbl 0826.53052
[11] Cahen, M.; Gutt, S.; Rawnsley, J.H., Quantization of Kähler manifolds IV, Lett. math. phys., 34, 159-168, (1995) · Zbl 0831.58026
[12] E. Cartan, The Theory of Spinors, Hermann, Paris, 1966. · Zbl 0147.40101
[13] Chow, W-L., On the geometry of algebraic homogeneous spaces, Ann. math., 50, 32-67, (1949) · Zbl 0040.22901
[14] R. Delbourgo, J.R. Fox, Maximum weight vectors possess minimum uncertainty, J. Phys. A 10 (1977) L233-235.
[15] J. Dixmier, C*-algebras, North-Holland, Amsterdam, 1977.
[16] Doty, S.; Walker, G., Modular symmetric functions and irreducible modular representations of general linear groups, J. pure appl. algebra, 82, 1-26, (1992) · Zbl 0804.20034
[17] Dunne, E.G.; Zierau, R., The automorphism group of complex homogeneous spaces, Math. ann., 307, 489-503, (1997) · Zbl 0876.22020
[18] W. Fulton, J. Harris, Representation Theory, Springer, Berlin, 1991. · Zbl 0744.22001
[19] Guillemin, V.; Sternberg, S., Convexity properties of the moment mapping I, Invent. math., 67, 491-513, (1982) · Zbl 0503.58017
[20] Guillemin, V.; Sternberg, S., Convexity properties of the moment mapping II, Invent. math., 77, 533-546, (1984) · Zbl 0561.58015
[21] Hannabuss, K.C., Representations of nilpotent locally compact groups, J. funct. anal., 34, 146-165, (1979) · Zbl 0431.22007
[22] Hannabuss, K.C., On a property of highest weight vectors, Quart. J. math. Oxford, 33, 2, 91-96, (1982) · Zbl 0457.22010
[23] Hannabuss, K.C., Highest weight vectors, projective geometry and the classical limit: II coherent states and integrable systems, J. geom. phys., 34, 29-40, (2000) · Zbl 1125.22300
[24] F.R. Harvey, Spinors and Calibrations, Academic Press, New York, 1990. · Zbl 0694.53002
[25] G. Higman, Representations of general linear groups and varieties of p-groups, in: L. Kovacs, B.H. Neumann (Eds.), Proceedings of the International Conference on Theory of Groups ANU, Canberra, 1965, Gordon and Breach, London, 1967. · Zbl 0242.20040
[26] Howe, R., The Fourier transform for nilpotent locally compact groups, Pacific J. math., 73, 307-327, (1977) · Zbl 0396.43013
[27] J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer, Berlin, 1972. · Zbl 0254.17004
[28] G. James, A. Kerber, The representation theory of the symmetric group, in: Encyclopaedia of Mathematics and its Applications, vol. 16, Addison-Wesley, Reading, MA, 1981. · Zbl 0491.20010
[29] Kac, V.G., Lie superalgebras, Adv. math., 26, 8-96, (1977) · Zbl 0366.17012
[30] Kirwan, F.C., Convexity properties of the moment mapping III, Invent. math., 77, 547-552, (1984) · Zbl 0561.58016
[31] F. Klein, The icosahedron, Dover, New York, 1956.
[32] Kostant, B., On convexity, the Weyl group and the Iwasawa decomposition, Ann. sci. ec. norm. sup., 6, 413-455, (1973) · Zbl 0293.22019
[33] Krop, L., On the representations of the full matrix semigroup on homogeneous polynomials, J. algebra, 99, 370-421, (1986) · Zbl 0588.20039
[34] Lancaster, G.; Towber, J., Representation functors and flag algebras for the classical groups, J. algebra, 59, 16-38, (1984) · Zbl 0441.14013
[35] R. Lazarsfeld, A. van de Ven, DMV Seminar 4. Topics in the Geometry of Projective Space: Recent Work of F.L. Zak, Birkhäuser, Basel, 1984. · Zbl 0564.14007
[36] Lichtenstein, W., On a system of quadrics describing the orbit of a highest weight vector, Proc. amer. math. soc., 84, 605-608, (1982) · Zbl 0501.22017
[37] Lichtenstein, W., Quadrature, scattering and representations, J. indiana math. soc., 31, 665-688, (1982) · Zbl 0521.41023
[38] Lieb, E., The classical limit of quantum spin systems, Commun. math. phys., 31, 327-340, (1973) · Zbl 1125.82305
[39] Moreno, C.; Ortega-Navarro, P., Deformations of the algebra of functions on Hermitean symmetric spaces resulting from quantization, Ann. inst. H. Poincaré, 38, 215-241, (1983) · Zbl 0528.58013
[40] Moreno, C., Star products on some Kähler manifolds, Lett. math. phys., 11, 361-372, (1986) · Zbl 0618.53049
[41] Moreno, C., Invariant star products and representations of compact semi-simple Lie groups, Lett. math. phys., 12, 217-229, (1986) · Zbl 0681.53036
[42] Moreno, C., Geodesic symmetries and invariant star products on Kähler symmetric spaces, Lett. math. phys., 13, 245-258, (1987) · Zbl 0628.58018
[43] C. Moreno, Produits star sur certains G/K kähleriens. Equation de Yang-Baxter et produits star sur G Lecture Notes in Mathematics, vol. 1416, Springer, Berlin, 1992, pp. 210-234.
[44] R. Penrose, W. Rindler, Space-Time Spinors, Cambridge University Press, Cambridge, 1984. · Zbl 0538.53024
[45] Ramanathan, A., Equations defining Schubert varieties and Frobenius splitting of diagonals, Publ. IHES, 65, 61-90, (1987) · Zbl 0634.14035
[46] Rawnsley, J.H.; Cahen, M.; Gutt, S., Quantization of Kähler manifolds I, J. geom. phys., 7, 45-62, (1990) · Zbl 0719.53044
[47] Simon, B., The classical limit of quantum partition functions, Commun. math. phys., 71, 247-276, (1980) · Zbl 0436.22012
[48] Sjamaar, R., Convexity properties of the moment map re-examined, Adv. math., 138, 46-91, (1998) · Zbl 0915.58036
[49] Spera, M., On a generalized uncertainty principle, coherent states and the moment map, J. geom. phys., 12, 165-182, (1993) · Zbl 0781.58009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.