×

zbMATH — the first resource for mathematics

Reciprocity in elastic media with rheology. (English) Zbl 1293.74029
Summary: The classic reciprocity theorem of E. Betti [Nuovo Cimento (2) 7–8, 5–21 (1872; JFM 04.0504.01)] for perfectly elasto-static media has been extended to the dynamic fields by D. Graffi [Ann. Mat. Pura Appl. (4) 18, 173–200 (1939; Zbl 0022.14703)] for isotropic media with variable density. In this note the theorem is extended to a wide class of media with rheology.
MSC:
74B99 Elastic materials
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Achenbach JD (2003) Reciprocity in elastodynamics. Cambridge University Press, Cambridge · Zbl 1060.74002
[2] Bagley, RL; Torvik, PJ, On the fractional calculus model of viscoelastic behaviour, J Rheol, 30, 133-155, (1986) · Zbl 0613.73034
[3] Betti, E, Equazioni di equilibrio dei solidi elastici omogenei, Nuovo Cimento, 2, 69-97, (1872)
[4] Caputo M (1969) Elasticità e dissipazione. Zanichelli, Bologna
[5] Caputo, M, Relaxation and free modes of a self-gravitating planet, Geophys J R Astron Soc, 77, 789-808, (1984)
[6] Caputo, M; Somogi, J (ed.); Reigberg, C (ed.), Spectral rheology in a sphere, Sopron, Hungary
[7] Caputo, M, Memory, reciprocity and double Green function in diffusion through a layer, Int J Appl Math, 19, 489-504, (2006) · Zbl 1143.26003
[8] Hoop, A, An elastodynamic reciprocity theorem for linear viscoelastic media, Appl Sci Res, 16, 39-45, (1966) · Zbl 0151.37202
[9] Fabrizio M (1973) Dualità e reciprocità per le equazioni non lineari dell’elettromagnetismo ereditario. 1. Atti Accad Naz Lincei, Rend Cl Sci Fis Mat Nat 55(8):420-428
[10] Fabrizio M (1973) Dualità e reciprocità per le equazioni non lineari dell’elettromagnetismo ereditario. 2. Atti Accad Naz Lincei, Rend Cl Sci Fis Mat Nat 55(8):692-696
[11] Graffi D (1939) Sui teoremi di reciprocità nei fenomeni dipendenti dal tempo. Ann Mat Pura Appl IV(18):173-200 · JFM 65.1025.03
[12] Knopoff, L; Gangi, A, Seismic reciprocity, Geophysics, 24, 681-691, (1959)
[13] Körnig, H; Müller, G, Rheological models and interpretation of postglacial uplift, Geophys J R Astron Soc, 98, 243-253, (1989)
[14] Mainardi, F; Spada, G, Creep, relaxation and viscosity properties for basic fractional models in rheology, Eur Phys J Spec Top, 193, 133-160, (2011)
[15] Rayleigh JWS (1894) The theory of sound. MacMillan, London
[16] Tonti, E, A mathematical model for physical theories. 1, Atti Accad Naz Lincei, Rend Cl Sci Fis Mat Nat, 52, 350-356, (1972) · Zbl 0256.70012
[17] Tonti, E, A mathematical model for physical theories. 2, Atti Accad Naz Lincei, Rend Cl Sci Fis Mat Nat, 52, 175-181, (1972) · Zbl 0256.70011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.