# zbMATH — the first resource for mathematics

Nonlinear degenerate parabolic equations for Baouendi-Grushin operators. (English) Zbl 1117.35039
In this paper, the author studies the following two nonlinear parabolic equations:
$\begin{cases} \frac{\partial u}{\partial t}=\Delta_\gamma(u^m)+V(z)u^{m} & \text{in } \Omega\times(0,T),\, 0<m<1,\\ u(z,0)=u_0(z)\geq 0 &\text{in } \Omega,\\ u(z,t)=0 &\text{on } \partial\Omega\times(0,T),\end{cases}\tag{1}$
and
$\begin{cases} \frac {\partial u}{\partial t}=\nabla_\gamma \cdot (| \nabla_\gamma u| ^{p-2}\nabla_\gamma u)+V(z)u^{p-1} &\text{in }\;\Omega\times(0,T),\\ u(z,0)=u_0(z)\geq 0 &\text{in } \Omega,\\ u(z,t)=0 &\text{on } \partial\Omega\times(0,T), \end{cases}\tag{2}$
where $$1<p<2$$, $$\Omega$$ is a Carnot-Carathéodory metric ball in $$\mathbb R^{d+k}$$, with $$d,k \geq 1$$ and $$d+k=N$$, and where $$V\in L^1_{\text{ loc}}(\Omega)$$. Moreover, $$\nabla_\gamma$$ denotes the sub-elliptic gradient, which is the ($$d+k$$)-dimensional vector field given by
$\nabla_\gamma := (\nabla_x,| x| ^\gamma\nabla_y),\quad \gamma>0.$
Finally, $$\Delta_\gamma$$ is the Baouendi-Grushin operator on $$\mathbb R^{d+k}$$ defined by
$\Delta_\gamma: =\nabla_\gamma \cdot \nabla_\gamma=\Delta_x+| x| ^{2\gamma}\Delta_y.$
These operators were introduced by M. S. Baouendi in [Bull. Soc. Math. Fr., 95, 45–87 (1967; Zbl 0179.19501)] and subsequently studied by V. V. Grushin in [Mat. Sb., 84, 163–195 (1971; Zbl 0215.49203)] and in [Mat. USSR-Sb., 12, No. 3, 458–476 (1970; Zbl 0252.35057)].
In accordance with the notation of the author, let $$\mathcal{K}$$ be a closed Lebesgue null subset of $$\Omega$$ and let $$\sigma_{\text{inf}} ( (1-\epsilon)V; \Omega)$$ and $$\sigma^p_{\text{inf}} ( (1-\epsilon)V; \Omega)$$ be defined, respectively, by
$\sigma_{\text{inf}} ( (1-\epsilon)V; \Omega) := \inf_{ 0 \not\equiv \phi \in C_c^{\infty}(\Omega \setminus \mathcal{K})} \frac{\int_{\Omega}| \nabla_{\gamma } \phi | ^2\,dz - \int_{\Omega} (1-\epsilon) V | \phi | ^2\, dz}{\int_{\Omega} | \phi| ^2 \,dz}$
and by
$\sigma^p_{\text{inf}} ( (1-\epsilon)V; \Omega) : =\inf_{ 0 \not\equiv \phi \in C_c^{\infty}(\Omega \setminus \mathcal{K})} \frac{\int_{\Omega}| \nabla_{\gamma } \phi | ^p\, dz - \int_{\Omega} (1-\epsilon) V | \phi | ^p \,dz}{\int_{\Omega} | \phi| ^p \,dz}.$
Now, the two main results can be restated as follows:
Theorem. Let $$\frac{Q-2}{Q} \leq m < 1$$ (respectively, $$\frac{2Q}{Q+1} \leq p < 2$$), where $$Q=d+(1+\gamma)k$$, and let $$V \in L^1_{\text{Loc}}(\Omega \setminus \mathcal{K})$$. If $$\sigma_{\text{inf}} ( (1-\epsilon)V; \Omega)= -\infty$$ (respectively, $$\sigma_{\text{inf}} ( (1-\epsilon)V; \Omega)= -\infty$$ ) for some $$\epsilon > 0$$ then the problem (1) (respectively, the problem (2)) has no general positive local solution off $$\mathcal{K}$$.

##### MSC:
 35K65 Degenerate parabolic equations 35K55 Nonlinear parabolic equations 35R05 PDEs with low regular coefficients and/or low regular data
Full Text:
##### References:
 [1] Aguilar Crespo, SIAM J. Math. Anal. 31 pp 1270– (2000) [2] Baras, Trans. Amer. Math. Soc. 284 pp 121– (1984) [3] Brezis, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 pp 223– (1998) [4] Baouendi, Bull. Soc. Math. France 95 pp 45– (1967) [5] Beckner, Proc. Amer. Math. Soc. 129 pp 1233– (2001) [6] Bieske, Illinois J. Math. 46 pp 893– (2002) [7] Cabré, C. R. Math. Acad. Sci. Paris 329 pp 973– (1999) · Zbl 0940.35105 [8] Chasseigne, Arch. Ration. Mech. Anal. 164 pp 133– (2002) [9] D’Ambrosio, J. Differential Equations 193 pp 511– (2003) [10] Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc, to appear. · Zbl 1049.35077 [11] Degenerate Parabolic Equations (Springer-Verlag, New York, 1993). · Zbl 0794.35090 [12] Garcia Azorero, J. Differential Equations 144 pp 441– (1998) [13] Franchi, Comm. Partial Differential Equations 19 pp 523– (1994) [14] Garofalo, J. Differential Equations 104 pp 117– (1993) [15] Garofalo, Math. Ann. 304 pp 701– (1996) [16] Goldstein, Contemp. Math. 327 pp 141– (2003) [17] Goldstein, Adv. Differential Equations 10 pp 1153– (2003) [18] Goldstein, Int. J. Evol. Equ. 1 pp 1– (2005) [19] Goldstein, J. Funct. Anal. 186 pp 342– (2001) [20] Goldstein, Trans. Amer. Math. Soc. 355 pp 197– (2003) [21] Grushin, Mat. Sb. 84 pp 163– (1971) [22] Grushin, Math. USSR-Sb. 12 pp 458– (1970) [23] Kombe, Proc. Amer. Math. Soc. 132 pp 2683– (2004) [24] Kombe, Nonlinear Anal. 56 pp 185– (2004) [25] On the nonexistence of positive solutions to doubly nonlinear parabolic equations for Baouendi–Grushin operator, Preprint (2004). [26] Lascialfari, Rend. Sem. Mat. Univ. Padova 107 pp 139– (2002) [27] Niu, Pacific J. Math. 208 pp 325– (2003) [28] Simon, Bull. Amer. Math. Soc. (N. S.) 7 pp 447– (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.