×

zbMATH — the first resource for mathematics

Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation. (English) Zbl 1156.76409
Summary: We report an investigation of inverse energy cascade in steady-state two-dimensional turbulence by direct numerical simulation (DNS) of the two-dimensional Navier-Stokes equation, with small-scale forcing and large-scale damping. We employed several types of damping and dissipation mechanisms in simulations up to 2048\(^2\) resolution. For all these simulations we obtained a wavenumber range for which the mean spectral energy flux is a negative constant and the energy spectrum scales as \(k^{-5/3}\), consistent with the predictions of R. H. Kraichnan [Phys. Fluids 439, 1417 (1967)]. To gain further insight, we investigated the energy cascade in physical space, employing a local energy flux defined by smooth filtering. We found that the inverse energy cascade is scale local, but that the strongly local contribution vanishes identically, as argued by R. H. Kraichnan [J. Fluid Mech. 47, 525–535 (1971; Zbl 0224.76053)]. The mean flux across a length scale \(\ell\) was shown to be due mainly to interactions with modes two to eight times smaller. A major part of our investigation was devoted to identifying the physical mechanism of the two-dimensional inverse energy cascade. One popular idea is that inverse energy cascade proceeds via merger of like-sign vortices. We made a quantitative study employing a precise topological criterion of merger events. Our statistical analysis showed that vortex mergers play a negligible direct role in producing mean inverse energy flux in our simulations. Instead, we obtained with the help of other works considerable evidence in favour of a ‘vortex thinning’ mechanism, according to which the large-scale strains do negative work against turbulent stress as they stretch out the isolines of small-scale vorticity. In particular, we studied a multi-scale gradient (MSG) expansion developed by G. L. Eyink [J. Fluid Mech. 549, 159 (2006)] for the turbulent stress, whose contributions to inverse cascade can all be explained by ‘thinning’. The MSG expansion up to second order in space gradients was found to predict well the magnitude, spatial structure and scale distribution of the local energy flux. The majority of mean flux was found to be due to the relative rotation of strain matrices at different length scales, a first-order effect of ‘thinning’. The remainder arose from two second-order effects, differential strain rotation and vorticity gradient stretching. Our findings give strong support to vortex thinning as the fundamental mechanism of two-dimensional inverse energy cascade.

MSC:
76F99 Turbulence
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112075001504 · Zbl 0366.76043
[2] DOI: 10.1023/A:1013790802740
[3] DOI: 10.1063/1.869840
[4] DOI: 10.1007/BF02780991
[5] Okubo, Deep-Sea Res. 17 pp 445– (1970)
[6] DOI: 10.1063/1.858296 · Zbl 0748.76064
[7] DOI: 10.1063/1.869027 · Zbl 1027.76516
[8] DOI: 10.1029/2006GL025865
[9] DOI: 10.1146/annurev.fluid.32.1.1
[10] DOI: 10.1017/S0022112090002981
[11] Maltrud, Phys. Fluids 5 pp 1760– (1993)
[12] Maltrud, J. Fluid Mech. 228 pp 321– (1991)
[13] DOI: 10.1175/1520-0469(1989)0462.0.CO;2
[14] DOI: 10.1080/03091927208236084
[15] DOI: 10.1063/1.1692444 · Zbl 0263.76046
[16] DOI: 10.1063/1.870234 · Zbl 1149.76445
[17] DOI: 10.1175/1520-0469(1976)0332.0.CO;2
[18] DOI: 10.1017/S002211207400070X · Zbl 0273.76037
[19] DOI: 10.1017/S0022112071001216 · Zbl 0224.76053
[20] DOI: 10.1063/1.1762301
[21] DOI: 10.1017/S0022112001004529 · Zbl 1017.76038
[22] DOI: 10.1143/JPSJ.50.3517
[23] DOI: 10.1126/science.284.5420.1609
[24] Hua, Phys. 113 pp 98– (1998)
[25] Holloway, Oceanic Circulation Models: Combining Data and Dynamics pp 513– (1989)
[26] DOI: 10.1109/38.79452 · Zbl 05085970
[27] DOI: 10.1017/S0022112092001733 · Zbl 0756.76034
[28] DOI: 10.1029/2004GL019691
[29] DOI: 10.1175/1520-0469(1986)0432.0.CO;2
[30] DOI: 10.1175/1520-0469(1979)0362.0.CO;2
[31] DOI: 10.1063/1.864870 · Zbl 0546.76082
[32] DOI: 10.1063/1.868255 · Zbl 0865.76030
[33] DOI: 10.1017/S0022112005007883
[34] DOI: 10.1017/S0022112005007895
[35] Eyink, Phys. 207 pp 91– (2005)
[36] Eyink, Phys. 91 pp 97– (1996)
[37] Eyink, Phys. 78 pp 222– (1994)
[38] DOI: 10.1017/S0022112002001416 · Zbl 1064.76059
[39] DOI: 10.1063/1.858643 · Zbl 0800.76208
[40] DOI: 10.1063/1.857736
[41] DOI: 10.1063/1.858764 · Zbl 0798.76032
[42] DOI: 10.1063/1.857966
[43] DOI: 10.1063/1.858647 · Zbl 0776.76042
[44] Weiss, Phys. 48 pp 273– (1991)
[45] DOI: 10.1063/1.858309 · Zbl 0745.76027
[46] Danilov, Phys. Rev. 63 pp 061208– (2001)
[47] DOI: 10.1029/2000JD900814
[48] DOI: 10.1103/PhysRevLett.91.214501
[49] DOI: 10.1103/PhysRevLett.96.084502
[50] DOI: 10.1103/PhysRevLett.90.214503
[51] DOI: 10.1175/1520-0469(2003)0602.0.CO;2
[52] DOI: 10.1175/1520-0469(1971)0282.0.CO;2
[53] DOI: 10.1073/pnas.0605494103
[54] DOI: 10.1063/1.869615 · Zbl 1185.76660
[55] Tran, Phys. Rev. 69 pp 036303– (2004)
[56] DOI: 10.1088/1468-5248/3/1/045 · Zbl 1082.76571
[57] Tran, Phys. 176 pp 242– (2003)
[58] Canuto, Spectral Methods in Fluid Dynamics. (1987)
[59] Tran, Phys. 213 pp 76– (2006)
[60] DOI: 10.1209/0295-5075/78/34002 · Zbl 1244.76012
[61] Tennekes, A First Course in Turbulence. (1972)
[62] DOI: 10.1063/1.870163 · Zbl 1149.76554
[63] DOI: 10.1175/JAS4013.1
[64] DOI: 10.1007/BF02088948 · Zbl 0882.76030
[65] Strogatz, Nonlinear Dynamics and Chaos: With Applications in Physics, Biology, Chemistry, and Engineering. (1994)
[66] Starr, Physics of Negative Viscosity Phenomena. (1968)
[67] Starr, Tellus 5 pp 494– (1953)
[68] DOI: 10.1103/PhysRevLett.71.352
[69] DOI: 10.1175/JAS4003.1
[70] DOI: 10.1175/JPO3027.1
[71] Scott, Phys. Rev. 75 pp 046301– (2007)
[72] Salmon, Lectures on Geophysical Fluid Dynamics. (1998)
[73] Salmon, Topics in Ocean Physics, Proc. International School of Physics ”Enrico Fermi” pp 30– (1982)
[74] DOI: 10.1146/annurev.fl.11.010179.002153
[75] Brasseur, Advances in Turbulence VI pp 201– (1996)
[76] DOI: 10.1103/PhysRevLett.72.1475
[77] Boffetta, Phys. Rev. 61 pp R29– (2000)
[78] DOI: 10.1017/S0022112007008014 · Zbl 1141.76401
[79] DOI: 10.1017/S0022112056000317 · Zbl 0071.40603
[80] DOI: 10.1063/1.1692443 · Zbl 0217.25801
[81] Basdevant, Phys. 73 pp 17– (1994)
[82] DOI: 10.1017/S0022112004003271 · Zbl 1068.76038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.