Contreras G., Mauricio Stochastic volatility models at \(\rho = \pm 1\) as second class constrained Hamiltonian systems. (English) Zbl 1402.91531 Physica A 405, 289-302 (2014). MSC: 91B70 91G70 35Q91 35Q84 81S40 PDF BibTeX XML Cite \textit{M. Contreras G.}, Physica A 405, 289--302 (2014; Zbl 1402.91531) Full Text: DOI
Contreras, Mauricio; Hojman, Sergio A. Option pricing, stochastic volatility, singular dynamics and constrained path integrals. (English) Zbl 1402.91768 Physica A 393, 391-403 (2014). MSC: 91G20 91G70 91B70 PDF BibTeX XML Cite \textit{M. Contreras} and \textit{S. A. Hojman}, Physica A 393, 391--403 (2014; Zbl 1402.91768) Full Text: DOI
Skinner, Ray; Rusk, Raymond Generalized Hamiltonian dynamics. I: Formulation on \(T^*Q\oplus TQ\). (English) Zbl 0556.70012 J. Math. Phys. 24, 2589-2594 (1983). Reviewer: Franz Selig (Wien) MSC: 70H50 70H05 70G10 PDF BibTeX XML Cite \textit{R. Skinner} and \textit{R. Rusk}, J. Math. Phys. 24, 2589--2594 (1983; Zbl 0556.70012) Full Text: DOI
Ellis, J. R. Motion of a classical particle with spin. (English) Zbl 0309.70007 Math. Proc. Camb. Philos. Soc. 78, 145-156 (1975). Reviewer: C. W. Kilmister (London) MSC: 70G45 70F99 PDF BibTeX XML Cite \textit{J. R. Ellis}, Math. Proc. Camb. Philos. Soc. 78, 145--156 (1975; Zbl 0309.70007) Full Text: DOI
Dirac, P. A. M. The theory of gravitation in Hamiltonian form. (English) Zbl 0080.41403 Proc. R. Soc. Lond., Ser. A 246, 333-343 (1958). Reviewer: Hans-Jürgen Treder (Potsdam) MSC: 83C05 83C10 PDF BibTeX XML Cite \textit{P. A. M. Dirac}, Proc. R. Soc. Lond., Ser. A 246, 333--343 (1958; Zbl 0080.41403) Full Text: DOI