×

zbMATH — the first resource for mathematics

Congruence extension from a semilattice to the freely generated distributive lattice. (English) Zbl 0512.06007

MSC:
06A12 Semilattices
06D10 Complete distributivity
06B10 Lattice ideals, congruence relations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] W. H. Cornish, R. C Hickman: Weakly distributive semilattices. Acta. Math. Hungar. 32 (1978) 5-16. · Zbl 0497.06005
[2] J. Fábera, T. Sturm: Embedding of semilattices into distributive lattices. Czech. Math. J. 29 (104) (1979) 232-245. · Zbl 0422.06003
[3] I. Fleischer: On extending congruences from partial algebras. Fund. Math. 88 (1975) 11-16. · Zbl 0312.08005
[4] I. Fleischer: Embedding a semilattice in a distributive lattice. Algebra Univ. 6 (1976) 85-86. · Zbl 0335.06005
[5] G. Grätzer: General Lattice Theory. Birkhäuser, Basel 1978. · Zbl 0385.06015
[6] G. Grätzer: Universal Algebra. Princeton 1968. · Zbl 0182.34201
[7] R. Hickman: Congruence extensions for semilattices with distributivity. Algebra Univ. 9 (1979) 179-198. · Zbl 0426.06002
[8] H. M. MacNeille: Partially ordered sets. Trans. Amer. Math. Soc. 42 (1937) 416-460. · Zbl 0017.33904
[9] R. S. Pierce: Introduction to the Theory of Abstract Algebras. New York, 1968.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.