zbMATH — the first resource for mathematics

The rotation class of a flow. (English) Zbl 1074.37008
Summary: Generalizing a construction of A. Weil [J. Indian Math. Soc. 19, 109–114 (1931; JFM 57.0503.03 and Zbl 0003.25501) and Rec. Math. Moscou, n. Ser. 1, 779–781 (1936; JFM 62.0665.03 and Zbl 0016.08601)], we introduce a topological invariant for flows on compact, connected, finite-dimensional, Abelian, topological groups. We calculate this invariant for some examples.
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B45 Continua theory in dynamics
Full Text: DOI arXiv
[1] Aranson, S.Kh.; Belitsky, G.R.; Zhuzhoma, E.V., Introduction to the qualitative theory of dynamical systems on surfaces, Transl. math. monographs, vol. 153, (1996), American Mathematical Society Providence, RI · Zbl 0853.58090
[2] Aranson, S.Kh.; Zhuzhoma, E.V., The topological classification of singular dynamical systems on the torus, Izv. vyssh. uchebn. zaved. mat., 5, 168, 104-107, (1976) · Zbl 0335.34026
[3] Clark, A., Linear flows on κ-solenoids, Topology appl., 94, 27-49, (1999) · Zbl 0929.37012
[4] Clark, A., Solenoidalization and denjoids, Houston J. math., 26, 661-692, (2000) · Zbl 1007.37008
[5] Fuchs, L., Infinite abelian groups, (1970), Academic Press New York · Zbl 0213.03501
[6] McCord, M.C., Inverse limit sequences with covering maps, Trans. amer. math. soc., 114, 197-209, (1965) · Zbl 0136.43603
[7] Scheffer, W., Maps between topological groups that are homotopic to homomorphisms, Proc. amer. math. soc., 33, 2, 562-567, (1972) · Zbl 0236.22008
[8] Weil, A., LES families de courbes sur le tore, Mat. sb., 1, 779-781, (1936) · Zbl 0016.08601
[9] Weil, A., On systems of curves on a ring-shaped surface, J. Indian math. soc., 19, 109-114, (1931) · JFM 57.0503.03
[10] de Vries, J., Elements of topological dynamics, (1993), Kluwer Academic Dordrecht · Zbl 0783.54035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.