Daili, Chafia; Achache, Mohamed An interior-point algorithm for semidefinite least-squares problems. (English) Zbl 07547200 Appl. Math., Praha 67, No. 3, 371-391 (2022). MSC: 65K05 90C22 90C25 90C51 PDF BibTeX XML Cite \textit{C. Daili} and \textit{M. Achache}, Appl. Math., Praha 67, No. 3, 371--391 (2022; Zbl 07547200) Full Text: DOI OpenURL
Zhang, Mingwang; Huang, Kun; Lv, Yanli A wide neighborhood arc-search interior-point algorithm for convex quadratic programming with box constraints and linear constraints. (English) Zbl 07545234 Optim. Eng. 23, No. 2, 1117-1137 (2022). MSC: 90C20 90C25 90C51 PDF BibTeX XML Cite \textit{M. Zhang} et al., Optim. Eng. 23, No. 2, 1117--1137 (2022; Zbl 07545234) Full Text: DOI OpenURL
Faybusovich, Leonid; Zhou, Cunlu Long-step path-following algorithm for quantum information theory: some numerical aspects and applications. (English) Zbl 07538870 Numer. Algebra Control Optim. 12, No. 2, 445-467 (2022). MSC: 90C22 90C30 90C51 81-08 90C25 90C90 PDF BibTeX XML Cite \textit{L. Faybusovich} and \textit{C. Zhou}, Numer. Algebra Control Optim. 12, No. 2, 445--467 (2022; Zbl 07538870) Full Text: DOI OpenURL
Basu, Saugata; Mohammad-Nezhad, Ali On the central path of semidefinite optimization: degree and worst-case convergence rate. (English) Zbl 07538382 SIAM J. Appl. Algebra Geom. 6, No. 2, 299-318 (2022). MSC: 14Pxx 90C22 90C51 PDF BibTeX XML Cite \textit{S. Basu} and \textit{A. Mohammad-Nezhad}, SIAM J. Appl. Algebra Geom. 6, No. 2, 299--318 (2022; Zbl 07538382) Full Text: DOI OpenURL
Kheirfam, Behrouz; Osmanpour, Naser A new wide-neighborhood predictor-corrector interior-point method for semidefinite optimization. (English) Zbl 07532885 J. Appl. Math. Comput. 68, No. 2, 1365-1385 (2022). MSC: 65K05 90C22 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{N. Osmanpour}, J. Appl. Math. Comput. 68, No. 2, 1365--1385 (2022; Zbl 07532885) Full Text: DOI OpenURL
Mousaab, Bouafia; Adnan, Yassine Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient bi-parameterized kernel function with a trigonometric barrier term. (English) Zbl 07523417 RAIRO, Oper. Res. 56, No. 2, 731-750 (2022). MSC: 90C05 90C31 90C51 PDF BibTeX XML Cite \textit{B. Mousaab} and \textit{Y. Adnan}, RAIRO, Oper. Res. 56, No. 2, 731--750 (2022; Zbl 07523417) Full Text: DOI OpenURL
Orlitzky, Michael On the symmetry of induced norm cones. (English) Zbl 07507020 Optimization 71, No. 3, 441-447 (2022). MSC: 17C20 90C51 47L07 PDF BibTeX XML Cite \textit{M. Orlitzky}, Optimization 71, No. 3, 441--447 (2022; Zbl 07507020) Full Text: DOI OpenURL
Lin, Qihang; Ma, Runchao; Xu, Yangyang Complexity of an inexact proximal-point penalty method for constrained smooth non-convex optimization. (English) Zbl 07506811 Comput. Optim. Appl. 82, No. 1, 175-224 (2022). MSC: 90C26 90C51 PDF BibTeX XML Cite \textit{Q. Lin} et al., Comput. Optim. Appl. 82, No. 1, 175--224 (2022; Zbl 07506811) Full Text: DOI OpenURL
Gorissen, Bram L. Interior point methods can exploit structure of convex piecewise linear functions with application in radiation therapy. (English) Zbl 07501970 SIAM J. Optim. 32, No. 1, 256-275 (2022). MSC: 90C06 90C51 92C50 PDF BibTeX XML Cite \textit{B. L. Gorissen}, SIAM J. Optim. 32, No. 1, 256--275 (2022; Zbl 07501970) Full Text: DOI OpenURL
Roy, Scott; Xiao, Lin On self-concordant barriers for generalized power cones. (English) Zbl 07490501 Optim. Lett. 16, No. 2, 681-694 (2022). MSC: 90C25 90C51 PDF BibTeX XML Cite \textit{S. Roy} and \textit{L. Xiao}, Optim. Lett. 16, No. 2, 681--694 (2022; Zbl 07490501) Full Text: DOI OpenURL
Touil, Imene; Chikouche, Wided Novel kernel function with a hyperbolic barrier term to primal-dual interior point algorithm for SDP problems. (English) Zbl 07490417 Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 44-67 (2022). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{I. Touil} and \textit{W. Chikouche}, Acta Math. Appl. Sin., Engl. Ser. 38, No. 1, 44--67 (2022; Zbl 07490417) Full Text: DOI OpenURL
Hou, Liangshao; Qian, Xun; Liao, Li-Zhi; Sun, Jie An interior point parameterized central path following algorithm for linearly constrained convex programming. (English) Zbl 07488708 J. Sci. Comput. 90, No. 3, Paper No. 95, 31 p. (2022). MSC: 90C25 90C30 90C51 90C60 PDF BibTeX XML Cite \textit{L. Hou} et al., J. Sci. Comput. 90, No. 3, Paper No. 95, 31 p. (2022; Zbl 07488708) Full Text: DOI OpenURL
Pougkakiotis, Spyridon; Gondzio, Jacek An interior point-proximal method of multipliers for linear positive semi-definite programming. (English) Zbl 1484.90067 J. Optim. Theory Appl. 192, No. 1, 97-129 (2022). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{S. Pougkakiotis} and \textit{J. Gondzio}, J. Optim. Theory Appl. 192, No. 1, 97--129 (2022; Zbl 1484.90067) Full Text: DOI arXiv OpenURL
Yamashita, Makoto; Iida, Einosuke; Yang, Yaguang An infeasible interior-point arc-search algorithm for nonlinear constrained optimization. (English) Zbl 1483.90180 Numer. Algorithms 89, No. 1, 249-275 (2022). MSC: 90C51 90C30 PDF BibTeX XML Cite \textit{M. Yamashita} et al., Numer. Algorithms 89, No. 1, 249--275 (2022; Zbl 1483.90180) Full Text: DOI arXiv OpenURL
Rehfeldt, Daniel; Hobbie, Hannes; Schönheit, David; Koch, Thorsten; Möst, Dominik; Gleixner, Ambros A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models. (English) Zbl 07421359 Eur. J. Oper. Res. 296, No. 1, 60-71 (2022). MSC: 90C51 90C05 90C15 91B74 PDF BibTeX XML Cite \textit{D. Rehfeldt} et al., Eur. J. Oper. Res. 296, No. 1, 60--71 (2022; Zbl 07421359) Full Text: DOI OpenURL
Chehab, Jean-Paul; Desveaux, Vivien; Handa, Marouan A sliding window algorithm for energy distribution system with storage. (English) Zbl 07533402 AIMS Math. 6, No. 11, 11815-11836 (2021). MSC: 90C05 90C06 90C30 90C51 90C90 90-08 PDF BibTeX XML Cite \textit{J.-P. Chehab} et al., AIMS Math. 6, No. 11, 11815--11836 (2021; Zbl 07533402) Full Text: DOI OpenURL
Das, Arup Kumar; Jana, Rwitam; Deepmala On the convergence of an iterative method for solving linear complementarity problem with WGPSBD matrix. (English) Zbl 1482.90245 Thai J. Math. 19, No. 4, 1375-1384 (2021). MSC: 90C51 90C90 PDF BibTeX XML Cite \textit{A. K. Das} et al., Thai J. Math. 19, No. 4, 1375--1384 (2021; Zbl 1482.90245) Full Text: Link OpenURL
Kheirfam, B.; Sangachin, M. Mohamadi An \(\mathcal{O}\sqrt{n}L)\) predictor-corrector interior-point algorithm for semidefinite optimization based on a wide neighbourhood. (English) Zbl 1479.90219 Int. J. Comput. Math. 98, No. 2, 414-433 (2021). MSC: 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{M. M. Sangachin}, Int. J. Comput. Math. 98, No. 2, 414--433 (2021; Zbl 1479.90219) Full Text: DOI OpenURL
Argáez, C.; Cánovas, M. J.; Parra, J. Calmness of linear constraint systems under structured perturbations with an application to the path-following scheme. (English) Zbl 07462107 Set-Valued Var. Anal. 29, No. 4, 839-860 (2021). Reviewer: Karel Zimmermann (Praha) MSC: 90C31 49J53 90C05 90C51 PDF BibTeX XML Cite \textit{C. Argáez} et al., Set-Valued Var. Anal. 29, No. 4, 839--860 (2021; Zbl 07462107) Full Text: DOI OpenURL
Hildebrand, Roland Optimal step length for the Newton method: case of self-concordant functions. (English) Zbl 1483.90179 Math. Methods Oper. Res. 94, No. 2, 253-279 (2021). MSC: 90C51 90C60 PDF BibTeX XML Cite \textit{R. Hildebrand}, Math. Methods Oper. Res. 94, No. 2, 253--279 (2021; Zbl 1483.90179) Full Text: DOI arXiv OpenURL
Hazzam, Nadia; Kebbiche, Zakia A primal-dual interior point method for \(P_{\ast}\left(\kappa \right)\)-HLCP based on a class of parametric kernel functions. (English) Zbl 1476.90327 Numer. Algebra Control Optim. 11, No. 4, 513-531 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{N. Hazzam} and \textit{Z. Kebbiche}, Numer. Algebra Control Optim. 11, No. 4, 513--531 (2021; Zbl 1476.90327) Full Text: DOI OpenURL
Tanneau, Mathieu; Anjos, Miguel F.; Lodi, Andrea Design and implementation of a modular interior-point solver for linear optimization. (English) Zbl 1476.90187 Math. Program. Comput. 13, No. 3, 509-551 (2021). MSC: 90C05 90C06 90C51 PDF BibTeX XML Cite \textit{M. Tanneau} et al., Math. Program. Comput. 13, No. 3, 509--551 (2021; Zbl 1476.90187) Full Text: DOI arXiv OpenURL
Zhao, Huali Complexities of homogeneous algorithm with one norm neighborhood for monotone nonlinear complementarity problems over symmetric cones. (Chinese. English summary) Zbl 07448827 Math. Pract. Theory 51, No. 15, 215-224 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Zhao}, Math. Pract. Theory 51, No. 15, 215--224 (2021; Zbl 07448827) OpenURL
Yang, Ya-Guang An interior-point algorithm for linear programming with optimal selection of centering parameter and step size. (English) Zbl 07443750 J. Oper. Res. Soc. China 9, No. 3, 659-671 (2021). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{Y.-G. Yang}, J. Oper. Res. Soc. China 9, No. 3, 659--671 (2021; Zbl 07443750) Full Text: DOI arXiv OpenURL
Cho, You-Young; Cho, Gyeong-Mi New interior-point methods for \(P_\ast(\kappa)\)-nonlinear complementarity problems. (English) Zbl 1475.90129 J. Nonlinear Convex Anal. 22, No. 5, 901-917 (2021). MSC: 90C51 90C33 90C30 PDF BibTeX XML Cite \textit{Y.-Y. Cho} and \textit{G.-M. Cho}, J. Nonlinear Convex Anal. 22, No. 5, 901--917 (2021; Zbl 1475.90129) Full Text: Link OpenURL
Dai, Yu-Hong; Wang, Zhouhong; Xu, Fengmin A primal-dual algorithm for unfolding neutron energy spectrum from multiple activation foils. (English) Zbl 1476.65095 J. Ind. Manag. Optim. 17, No. 5, 2367-2387 (2021). MSC: 65K05 90C51 65F22 PDF BibTeX XML Cite \textit{Y.-H. Dai} et al., J. Ind. Manag. Optim. 17, No. 5, 2367--2387 (2021; Zbl 1476.65095) Full Text: DOI OpenURL
Li, Mengmeng; Zhang, Mingwang; Huang, Kun; Huang, Zhengwei A new primal-dual interior-point method for semidefinite optimization based on a parameterized kernel function. (English) Zbl 1474.90516 Optim. Eng. 22, No. 1, 293-319 (2021). MSC: 90C51 90C05 90C30 PDF BibTeX XML Cite \textit{M. Li} et al., Optim. Eng. 22, No. 1, 293--319 (2021; Zbl 1474.90516) Full Text: DOI OpenURL
Fathi-Hafshejani, S.; Moaberfard, Z. A generic kernel function for interior point methods. (English) Zbl 1474.65164 Optim. Eng. 22, No. 1, 261-291 (2021). MSC: 65K05 90C05 90C51 65Y20 PDF BibTeX XML Cite \textit{S. Fathi-Hafshejani} and \textit{Z. Moaberfard}, Optim. Eng. 22, No. 1, 261--291 (2021; Zbl 1474.65164) Full Text: DOI OpenURL
Silva, Lino M.; Oliveira, Aurelio R. L. Modified controlled Cholesky factorization for preconditioning linear systems from the interior-point method. (English) Zbl 1476.90186 Comput. Appl. Math. 40, No. 4, Paper No. 154, 13 p. (2021). MSC: 90C05 90C51 65F08 15A23 PDF BibTeX XML Cite \textit{L. M. Silva} and \textit{A. R. L. Oliveira}, Comput. Appl. Math. 40, No. 4, Paper No. 154, 13 p. (2021; Zbl 1476.90186) Full Text: DOI OpenURL
Natale, Andrea; Todeschi, Gabriele Computation of optimal transport with finite volumes. (English) Zbl 1477.65177 ESAIM, Math. Model. Numer. Anal. 55, No. 5, 1847-1871 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65N08 65N50 35A15 65K10 49M29 90C51 PDF BibTeX XML Cite \textit{A. Natale} and \textit{G. Todeschi}, ESAIM, Math. Model. Numer. Anal. 55, No. 5, 1847--1871 (2021; Zbl 1477.65177) Full Text: DOI arXiv OpenURL
Bellavia, Stefania; Gondzio, Jacek; Porcelli, Margherita A relaxed interior point method for low-rank semidefinite programming problems with applications to matrix completion. (English) Zbl 1479.90152 J. Sci. Comput. 89, No. 2, Paper No. 46, 36 p. (2021). MSC: 90C22 90C51 65F10 65F50 PDF BibTeX XML Cite \textit{S. Bellavia} et al., J. Sci. Comput. 89, No. 2, Paper No. 46, 36 p. (2021; Zbl 1479.90152) Full Text: DOI arXiv OpenURL
Gong, Xiaoyu; Ding, Xuefeng; Wang, Xianjia A new method for \({P_*}(\kappa)\) horizontal linear complementarity problem based on full Newton step. (Chinese. English summary) Zbl 07404430 Math. Pract. Theory 51, No. 7, 206-212 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{X. Gong} et al., Math. Pract. Theory 51, No. 7, 206--212 (2021; Zbl 07404430) OpenURL
Zhao, Huali Complexity analysis of a wide neighborhood interior point method for nonmonotone LCP. (Chinese. English summary) Zbl 07403813 J. Beihua Univ., Nat. Sci. 22, No. 2, 141-148 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{H. Zhao}, J. Beihua Univ., Nat. Sci. 22, No. 2, 141--148 (2021; Zbl 07403813) Full Text: DOI OpenURL
Mohammad-Nezhad, Ali; Terlaky, Tamás On the sensitivity of the optimal partition for parametric second-order conic optimization. (English) Zbl 1478.90128 Math. Program. 189, No. 1-2 (B), 491-525 (2021). MSC: 90C31 90C22 90C51 PDF BibTeX XML Cite \textit{A. Mohammad-Nezhad} and \textit{T. Terlaky}, Math. Program. 189, No. 1--2 (B), 491--525 (2021; Zbl 1478.90128) Full Text: DOI arXiv OpenURL
Lee, Yin Tat; Yue, Man-Chung Universal barrier is \(n\)-self-concordant. (English) Zbl 07395114 Math. Oper. Res. 46, No. 3, 1129-1148 (2021). MSC: 90C51 52A40 PDF BibTeX XML Cite \textit{Y. T. Lee} and \textit{M.-C. Yue}, Math. Oper. Res. 46, No. 3, 1129--1148 (2021; Zbl 07395114) Full Text: DOI arXiv OpenURL
Birgin, E. G.; Gardenghi, J. L.; Martínez, J. M.; Santos, S. A. On the solution of linearly constrained optimization problems by means of barrier algorithms. (English) Zbl 07389625 Top 29, No. 2, 417-441 (2021). MSC: 65K05 90C30 90C51 PDF BibTeX XML Cite \textit{E. G. Birgin} et al., Top 29, No. 2, 417--441 (2021; Zbl 07389625) Full Text: DOI OpenURL
Kheirfam, B. A polynomial-iteration infeasible interior-point algorithm with arc-search for semidefinite optimization. (English) Zbl 1476.90232 J. Sci. Comput. 88, No. 3, Paper No. 89, 23 p. (2021). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, J. Sci. Comput. 88, No. 3, Paper No. 89, 23 p. (2021; Zbl 1476.90232) Full Text: DOI OpenURL
Kheirfam, Behrouz; Osmanpour, Naser; Keyanpour, Mohammad An arc-search infeasible interior-point method for semidefinite optimization with the negative infinity neighborhood. (English) Zbl 1476.90233 Numer. Algorithms 88, No. 1, 143-163 (2021). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} et al., Numer. Algorithms 88, No. 1, 143--163 (2021; Zbl 1476.90233) Full Text: DOI OpenURL
Boudjellal, N.; Roumili, H.; Benterki, DJ. A primal-dual interior point algorithm for convex quadratic programming based on a new parametric kernel function. (English) Zbl 1476.90227 Optimization 70, No. 8, 1703-1724 (2021). MSC: 90C20 90C25 90C51 PDF BibTeX XML Cite \textit{N. Boudjellal} et al., Optimization 70, No. 8, 1703--1724 (2021; Zbl 1476.90227) Full Text: DOI OpenURL
Chi, Xiaoni; Wang, Guoqiang A full-Newton step infeasible interior-point method for the special weighted linear complementarity problem. (English) Zbl 1475.90128 J. Optim. Theory Appl. 190, No. 1, 108-129 (2021). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{X. Chi} and \textit{G. Wang}, J. Optim. Theory Appl. 190, No. 1, 108--129 (2021; Zbl 1475.90128) Full Text: DOI OpenURL
Chen, Zhongzhu; Fampa, Marcia; Lambert, Amélie; Lee, Jon Mixing convex-optimization bounds for maximum-entropy sampling. (English) Zbl 1473.90136 Math. Program. 188, No. 2(B), 539-568 (2021). MSC: 90C27 90C25 90C51 62K99 62H11 PDF BibTeX XML Cite \textit{Z. Chen} et al., Math. Program. 188, No. 2(B), 539--568 (2021; Zbl 1473.90136) Full Text: DOI arXiv OpenURL
Bennani, Ahlem; Benterki, Djamel; Grar, Hassina Adaptive projection methods for linear fractional programming. (English) Zbl 1472.90136 RAIRO, Oper. Res. 55, Suppl., S2383-S2392 (2021). MSC: 90C32 90C05 90C33 35R35 90C51 PDF BibTeX XML Cite \textit{A. Bennani} et al., RAIRO, Oper. Res. 55, S2383--S2392 (2021; Zbl 1472.90136) Full Text: DOI OpenURL
Yamashita, Hiroshi; Yabe, Hiroshi; Harada, Kouhei Correction to: “A primal-dual interior point trust-region method for nonlinear semidefinite programming”. (English) Zbl 1472.90085 Optim. Methods Softw. 36, No. 2-3, 669 (2021). MSC: 90C22 90C26 90C51 PDF BibTeX XML Cite \textit{H. Yamashita} et al., Optim. Methods Softw. 36, No. 2--3, 669 (2021; Zbl 1472.90085) Full Text: DOI OpenURL
Yamashita, Hiroshi; Yabe, Hiroshi; Harada, Kouhei A primal-dual interior point trust-region method for nonlinear semidefinite programming. (English) Zbl 1470.90067 Optim. Methods Softw. 36, No. 2-3, 569-601 (2021); correction ibid. 36, No. 2-3, 669 (2021). MSC: 90C22 90C26 90C51 PDF BibTeX XML Cite \textit{H. Yamashita} et al., Optim. Methods Softw. 36, No. 2--3, 569--601 (2021; Zbl 1470.90067) Full Text: DOI OpenURL
Lin, Tianyi; Ma, Shiqian; Ye, Yinyu; Zhang, Shuzhong An ADMM-based interior-point method for large-scale linear programming. (English) Zbl 1470.90048 Optim. Methods Softw. 36, No. 2-3, 389-424 (2021). MSC: 90C05 90C06 90C51 PDF BibTeX XML Cite \textit{T. Lin} et al., Optim. Methods Softw. 36, No. 2--3, 389--424 (2021; Zbl 1470.90048) Full Text: DOI arXiv OpenURL
Zhang, Richard Y.; Lavaei, Javad Sparse semidefinite programs with guaranteed near-linear time complexity via dualized clique tree conversion. (English) Zbl 1470.90070 Math. Program. 188, No. 1(A), 351-393 (2021). MSC: 90C22 90C35 90C51 90C06 PDF BibTeX XML Cite \textit{R. Y. Zhang} and \textit{J. Lavaei}, Math. Program. 188, No. 1(A), 351--393 (2021; Zbl 1470.90070) Full Text: DOI arXiv OpenURL
Chi, Xiaoni; Zhang, Ruijie; Liu, Sanyang A new full-Newton step feasible interior-point algorithm for linear weighted complementarity problem. (Chinese. English summary) Zbl 1474.90474 Math. Appl. 34, No. 2, 304-311 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{X. Chi} et al., Math. Appl. 34, No. 2, 304--311 (2021; Zbl 1474.90474) OpenURL
Papadopoulos, Ioannis P. A.; Farrell, Patrick E.; Surowiec, Thomas M. Computing multiple solutions of topology optimization problems. (English) Zbl 1472.35308 SIAM J. Sci. Comput. 43, No. 3, A1555-A1582 (2021). MSC: 35Q35 49M15 65K05 65K10 74P05 74P10 90C26 90C51 PDF BibTeX XML Cite \textit{I. P. A. Papadopoulos} et al., SIAM J. Sci. Comput. 43, No. 3, A1555--A1582 (2021; Zbl 1472.35308) Full Text: DOI arXiv OpenURL
Armand, Paul; Tran, Ngoc Nguyen Local convergence analysis of a primal-dual method for bound-constrained optimization without SOSC. (English) Zbl 1470.90127 J. Optim. Theory Appl. 189, No. 1, 96-116 (2021). MSC: 90C30 65K05 90C26 90C33 90C51 PDF BibTeX XML Cite \textit{P. Armand} and \textit{N. N. Tran}, J. Optim. Theory Appl. 189, No. 1, 96--116 (2021; Zbl 1470.90127) Full Text: DOI OpenURL
Castro, Jordi; Nasini, Stefano A specialized interior-point algorithm for huge minimum convex cost flows in bipartite networks. (English) Zbl 07355301 Eur. J. Oper. Res. 290, No. 3, 857-869 (2021). MSC: 90C51 90B10 90C06 90C35 PDF BibTeX XML Cite \textit{J. Castro} and \textit{S. Nasini}, Eur. J. Oper. Res. 290, No. 3, 857--869 (2021; Zbl 07355301) Full Text: DOI Link OpenURL
Pougkakiotis, Spyridon; Gondzio, Jacek An interior point-proximal method of multipliers for convex quadratic programming. (English) Zbl 1469.90158 Comput. Optim. Appl. 78, No. 2, 307-351 (2021). MSC: 90C51 90C20 90C25 PDF BibTeX XML Cite \textit{S. Pougkakiotis} and \textit{J. Gondzio}, Comput. Optim. Appl. 78, No. 2, 307--351 (2021; Zbl 1469.90158) Full Text: DOI arXiv OpenURL
Ek, David; Forsgren, Anders Approximate solution of system of equations arising in interior-point methods for bound-constrained optimization. (English) Zbl 1469.90137 Comput. Optim. Appl. 79, No. 1, 155-191 (2021). MSC: 90C30 90C51 PDF BibTeX XML Cite \textit{D. Ek} and \textit{A. Forsgren}, Comput. Optim. Appl. 79, No. 1, 155--191 (2021; Zbl 1469.90137) Full Text: DOI arXiv OpenURL
Sekiguchi, Yoshiyuki; Waki, Hayato Perturbation analysis of singular semidefinite programs and its applications to control problems. (English) Zbl 07350178 J. Optim. Theory Appl. 188, No. 1, 52-72 (2021). MSC: 90C31 90C22 90C51 93D15 PDF BibTeX XML Cite \textit{Y. Sekiguchi} and \textit{H. Waki}, J. Optim. Theory Appl. 188, No. 1, 52--72 (2021; Zbl 07350178) Full Text: DOI arXiv OpenURL
Darvay, Zsolt; Illés, Tibor; Majoros, Csilla Interior-point algorithm for sufficient LCPs based on the technique of algebraically equivalent transformation. (English) Zbl 1466.90108 Optim. Lett. 15, No. 2, 357-376 (2021). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., Optim. Lett. 15, No. 2, 357--376 (2021; Zbl 1466.90108) Full Text: DOI OpenURL
Henrion, Didier; Naldi, Simone; Safey El Din, Mohab Exact algorithms for semidefinite programs with degenerate feasible set. (English) Zbl 1460.90128 J. Symb. Comput. 104, 942-959 (2021). MSC: 90C22 68W30 90C51 90C05 90C60 13P15 14P10 PDF BibTeX XML Cite \textit{D. Henrion} et al., J. Symb. Comput. 104, 942--959 (2021; Zbl 1460.90128) Full Text: DOI arXiv OpenURL
Haeser, Gabriel; Hinder, Oliver; Ye, Yinyu On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. (English) Zbl 1459.90152 Math. Program. 186, No. 1-2 (A), 257-288 (2021). MSC: 90C25 90C30 90C46 90C51 PDF BibTeX XML Cite \textit{G. Haeser} et al., Math. Program. 186, No. 1--2 (A), 257--288 (2021; Zbl 1459.90152) Full Text: DOI arXiv OpenURL
Allamigeon, Xavier; Benchimol, Pascal; Gaubert, Stéphane; Joswig, Michael What tropical geometry tells us about the complexity of linear programming. (English) Zbl 1459.90124 SIAM Rev. 63, No. 1, 123-164 (2021). MSC: 90C05 90C51 90C24 14T10 PDF BibTeX XML Cite \textit{X. Allamigeon} et al., SIAM Rev. 63, No. 1, 123--164 (2021; Zbl 1459.90124) Full Text: DOI OpenURL
Kheirfam, B.; Nasrollahi, A.; Mohammadi, M. A second-order corrector infeasible interior-point method for semidefinite optimization based on a wide neighborhood. (English) Zbl 1458.90507 J. Sci. Comput. 86, No. 1, Paper No. 13, 17 p. (2021). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} et al., J. Sci. Comput. 86, No. 1, Paper No. 13, 17 p. (2021; Zbl 1458.90507) Full Text: DOI OpenURL
Bartmeyer, Petra Maria; Bocanegra, Silvana; Oliveira, Aurelio Ribeiro Leite Switching preconditioners using a hybrid approach for linear systems arising from interior point methods for linear programming. (English) Zbl 1456.65039 Numer. Algorithms 86, No. 1, 397-424 (2021). MSC: 65K05 65F08 90C05 90C51 PDF BibTeX XML Cite \textit{P. M. Bartmeyer} et al., Numer. Algorithms 86, No. 1, 397--424 (2021; Zbl 1456.65039) Full Text: DOI OpenURL
Yang, Yaguang Arc-search techniques for interior-point methods. (English) Zbl 1448.90002 Boca Raton, FL: CRC Press (ISBN 978-0-367-48728-7/hbk; 978-1-003-04251-8/ebook). x, 306 p. (2021). MSC: 90-01 90C51 90C05 90C20 90C22 90C60 PDF BibTeX XML Cite \textit{Y. Yang}, Arc-search techniques for interior-point methods. Boca Raton, FL: CRC Press (2021; Zbl 1448.90002) Full Text: DOI OpenURL
Touil, Imene; Chikouche, Wided Primal-dual interior point methods for semidefinite programming based on a new type of kernel functions. (English) Zbl 07541463 Filomat 34, No. 12, 3957-3969 (2020). MSC: 90C22 90C51 90C31 PDF BibTeX XML Cite \textit{I. Touil} and \textit{W. Chikouche}, Filomat 34, No. 12, 3957--3969 (2020; Zbl 07541463) Full Text: DOI OpenURL
Chaghoub, Soraya; Benterki, Djamel Comparative numerical study between line search methods and majorant functions in barrier logarithmic methods for linear programming. (English) Zbl 07473683 J. Numer. Anal. Approx. Theory 49, No. 1, 15-21 (2020). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{S. Chaghoub} and \textit{D. Benterki}, J. Numer. Anal. Approx. Theory 49, No. 1, 15--21 (2020; Zbl 07473683) OpenURL
Fathi Hafshejani, Sajad; Fakharzadeh Jahromi, Alireza An interior point method for \(P_*(\kappa)\)-horizontal linear complementarity problem based on a new proximity function. (English) Zbl 1475.90109 J. Appl. Math. Comput. 62, No. 1-2, 281-300 (2020). MSC: 90C33 90C51 65K05 PDF BibTeX XML Cite \textit{S. Fathi Hafshejani} and \textit{A. Fakharzadeh Jahromi}, J. Appl. Math. Comput. 62, No. 1--2, 281--300 (2020; Zbl 1475.90109) Full Text: DOI OpenURL
Zhang, Mingwang; Huang, Kun; Li, Mengmeng; Lv, Yanli A new full-Newton step interior-point method for \(P_*(\kappa)\)-LCP based on a positive-asymptotic kernel function. (English) Zbl 1475.90130 J. Appl. Math. Comput. 64, No. 1-2, 313-330 (2020). MSC: 90C51 90C05 90C30 PDF BibTeX XML Cite \textit{M. Zhang} et al., J. Appl. Math. Comput. 64, No. 1--2, 313--330 (2020; Zbl 1475.90130) Full Text: DOI OpenURL
Kheirfam, B.; Haghighi, M. A wide neighborhood interior-point algorithm based on the trigonometric kernel function. (English) Zbl 1475.90034 J. Appl. Math. Comput. 64, No. 1-2, 119-135 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{M. Haghighi}, J. Appl. Math. Comput. 64, No. 1--2, 119--135 (2020; Zbl 1475.90034) Full Text: DOI OpenURL
Chenouf, Chahinez; Kebbiche, Zakia The effect of the step-size on the numerical behavior of a primal-dual interior-point algorithm applied to \(P_*(\kappa)\)-linear complementary problem. (English) Zbl 07417639 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 13(62), No. 1, 331-342 (2020). MSC: 90C33 90C05 90C51 PDF BibTeX XML Cite \textit{C. Chenouf} and \textit{Z. Kebbiche}, Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 13(62), No. 1, 331--342 (2020; Zbl 07417639) Full Text: DOI OpenURL
Ayache, Benhadid; Khaled, Saoudi A new parameterized logarithmic kernel function for linear optimization with a double barrier term yielding the best known iteration bound. (English) Zbl 1465.90041 Commun. Math. 28, No. 1, 27-41 (2020). MSC: 90C05 90C51 90C31 PDF BibTeX XML Cite \textit{B. Ayache} and \textit{S. Khaled}, Commun. Math. 28, No. 1, 27--41 (2020; Zbl 1465.90041) Full Text: DOI OpenURL
Geng, Jie; Zhang, Mingwang; Pang, Jinjuan A full-Newton step feasible IPM for semidefinite optimization based on a kernel function with linear growth term. (English) Zbl 1474.90322 Wuhan Univ. J. Nat. Sci. 25, No. 6, 501-509 (2020). MSC: 90C22 90C51 PDF BibTeX XML Cite \textit{J. Geng} et al., Wuhan Univ. J. Nat. Sci. 25, No. 6, 501--509 (2020; Zbl 1474.90322) Full Text: DOI OpenURL
Cho, You-Young; Cho, Gyeong-Mi Interior-point methods for \(P_\ast(\kappa)\)-horizontal linear complementarity problems. (English) Zbl 1460.90202 J. Nonlinear Convex Anal. 21, No. 1, 127-137 (2020). MSC: 90C51 90C33 PDF BibTeX XML Cite \textit{Y.-Y. Cho} and \textit{G.-M. Cho}, J. Nonlinear Convex Anal. 21, No. 1, 127--137 (2020; Zbl 1460.90202) Full Text: Link OpenURL
Derbal, Louiza; Kebbiche, Zakia An efficient parameterized logarithmic kernel function for semidefinite optimization. (English) Zbl 1466.90066 Acta Math. Appl. Sin., Engl. Ser. 36, No. 3, 753-770 (2020). MSC: 90C22 90C31 90C51 PDF BibTeX XML Cite \textit{L. Derbal} and \textit{Z. Kebbiche}, Acta Math. Appl. Sin., Engl. Ser. 36, No. 3, 753--770 (2020; Zbl 1466.90066) Full Text: DOI OpenURL
Kheirfam, Behrouz An interior-point method for symmetric optimization based on a new wide neighborhood. (English) Zbl 1457.90170 Pac. J. Optim. 16, No. 4, 625-640 (2020). MSC: 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, Pac. J. Optim. 16, No. 4, 625--640 (2020; Zbl 1457.90170) Full Text: Link OpenURL
Leulmi, A.; Leulmi, S.; Merikhi, B. Adaptation of the minorant function in Karmarkar’s projective method for linear optimization. (English) Zbl 1461.65171 Indian J. Math. 62, No. 3, 269-285 (2020). MSC: 65K05 90C05 90C51 PDF BibTeX XML Cite \textit{A. Leulmi} et al., Indian J. Math. 62, No. 3, 269--285 (2020; Zbl 1461.65171) OpenURL
Hoto, R. S. V.; Matioli, L. C.; Santos, P. S. M. A penalty algorithm for solving convex separable knapsack problems. (English) Zbl 1474.65167 Appl. Math. Comput. 387, Article ID 124855, 9 p. (2020). MSC: 65K05 90C25 90C51 90C30 PDF BibTeX XML Cite \textit{R. S. V. Hoto} et al., Appl. Math. Comput. 387, Article ID 124855, 9 p. (2020; Zbl 1474.65167) Full Text: DOI OpenURL
Freitas, Juliana Campos de; Florentino, Helenice de Oliveira; Benedito, Antone dos Santos; Cantane, Daniela Renata Optimization model applied to radiotherapy planning problem with dose intensity and beam choice. (English) Zbl 1472.92121 Appl. Math. Comput. 387, Article ID 124786, 13 p. (2020). MSC: 92C50 90C05 90C51 90C90 PDF BibTeX XML Cite \textit{J. C. de Freitas} et al., Appl. Math. Comput. 387, Article ID 124786, 13 p. (2020; Zbl 1472.92121) Full Text: DOI OpenURL
Kheirfam, B.; Nasrollahi, A. A wide neighborhood predictor-infeasible corrector interior-point algorithm for linear optimization. (English) Zbl 1460.90107 Optim. Lett. 14, No. 8, 2549-2563 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{A. Nasrollahi}, Optim. Lett. 14, No. 8, 2549--2563 (2020; Zbl 1460.90107) Full Text: DOI OpenURL
Darvay, Zsolt; Kheirfam, Behrouz; Rigó, Petra Renáta A new wide neighborhood primal-dual second-order corrector algorithm for linear optimization. (English) Zbl 1459.90125 Optim. Lett. 14, No. 7, 1747-1763 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., Optim. Lett. 14, No. 7, 1747--1763 (2020; Zbl 1459.90125) Full Text: DOI OpenURL
Deng, Yongping; Awan, Muhammad Uzair; Talib, Sadia; Noor, Muhammad Aslam; Noor, Khalida Inayat; Mohammed, Pshtiwan Othman; Wu, Shanhe Inequalities for estimations of integrals related to higher-order strongly \(n\)-polynomial preinvex functions. (English) Zbl 07311479 J. Math. 2020, Article ID 8841356, 12 p. (2020). MSC: 26D10 90C51 PDF BibTeX XML Cite \textit{Y. Deng} et al., J. Math. 2020, Article ID 8841356, 12 p. (2020; Zbl 07311479) Full Text: DOI OpenURL
Hübner, Jens; Schmidt, Martin; Steinbach, Marc C. Optimization techniques for tree-structured nonlinear problems. (English) Zbl 07304217 Comput. Manag. Sci. 17, No. 3, 409-436 (2020). MSC: 90Bxx 90-08 90C06 90C15 90C30 90C51 PDF BibTeX XML Cite \textit{J. Hübner} et al., Comput. Manag. Sci. 17, No. 3, 409--436 (2020; Zbl 07304217) Full Text: DOI OpenURL
Schork, Lukas; Gondzio, Jacek Implementation of an interior point method with basis preconditioning. (English) Zbl 1452.90217 Math. Program. Comput. 12, No. 4, 603-635 (2020). MSC: 90C05 90C06 90C51 PDF BibTeX XML Cite \textit{L. Schork} and \textit{J. Gondzio}, Math. Program. Comput. 12, No. 4, 603--635 (2020; Zbl 1452.90217) Full Text: DOI OpenURL
Rasheed, Ali S.; Mayah, Faik; Al-Jumaili, Ahmed A. H. Optimization techniques on affine differential manifolds. (English) Zbl 1474.90341 Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 14, 12 p. (2020). MSC: 90C25 90C51 PDF BibTeX XML Cite \textit{A. S. Rasheed} et al., Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 14, 12 p. (2020; Zbl 1474.90341) Full Text: Link OpenURL
Gupta, Varun; Radovanović, Ana Interior-point-based online stochastic bin packing. (English) Zbl 1457.90123 Oper. Res. 68, No. 5, 1474-1492 (2020). MSC: 90C27 90C15 90C51 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{A. Radovanović}, Oper. Res. 68, No. 5, 1474--1492 (2020; Zbl 1457.90123) Full Text: DOI arXiv OpenURL
Casanellas, Glòria; Castro, Jordi Using interior point solvers for optimizing progressive lens models with spherical coordinates. (English) Zbl 1457.90113 Optim. Eng. 21, No. 4, 1389-1421 (2020). MSC: 90C26 90C51 PDF BibTeX XML Cite \textit{G. Casanellas} and \textit{J. Castro}, Optim. Eng. 21, No. 4, 1389--1421 (2020; Zbl 1457.90113) Full Text: DOI Link OpenURL
Fathi-Hafshejani, S.; Moaberfard, Z. An interior-point algorithm for linearly constrained convex optimization based on kernel function and application in non-negative matrix factorization. (English) Zbl 1457.90108 Optim. Eng. 21, No. 3, 1019-1051 (2020). MSC: 90C25 90C51 PDF BibTeX XML Cite \textit{S. Fathi-Hafshejani} and \textit{Z. Moaberfard}, Optim. Eng. 21, No. 3, 1019--1051 (2020; Zbl 1457.90108) Full Text: DOI OpenURL
Darvay, Zsolt; Rigó, Petra Renáta; Szénási, Eszter Interior-point algorithm for linear optimization based on a new search direction. (Hungarian. English summary) Zbl 1463.90146 Alkalmazott Mat. Lapok 37, No. 2, 10 p. (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., Alkalmazott Mat. Lapok 37, No. 2, 10 p. (2020; Zbl 1463.90146) Full Text: Link OpenURL
Kheirfam, Behrouz A second-order corrector infeasible interior-point method with one-norm wide neighborhood for symmetric optimization. (English) Zbl 1476.90350 Fundam. Inform. 172, No. 4, 343-359 (2020). MSC: 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam}, Fundam. Inform. 172, No. 4, 343--359 (2020; Zbl 1476.90350) Full Text: DOI OpenURL
Jia, Wei; Yong, Longquan; Li, Na Initial point selection in primal-dual interior point method for linear programming based on evolutionary algorithm. (Chinese. English summary) Zbl 1463.90147 J. Nanjing Univ. Aeronaut. Astronaut. 52, No. 2, 334-340 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{W. Jia} et al., J. Nanjing Univ. Aeronaut. Astronaut. 52, No. 2, 334--340 (2020; Zbl 1463.90147) Full Text: DOI OpenURL
Darvay, Zsolt; Illés, Tibor; Povh, Janez; Rigó, Petra Renáta Feasible corrector-predictor interior-point algorithm for \(P_* (\kappa)\)-linear complementarity problems based on a new search direction. (English) Zbl 1451.90161 SIAM J. Optim. 30, No. 3, 2628-2658 (2020). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{Z. Darvay} et al., SIAM J. Optim. 30, No. 3, 2628--2658 (2020; Zbl 1451.90161) Full Text: DOI OpenURL
Chouzenoux, Emilie; Corbineau, Marie-Caroline; Pesquet, Jean-Christophe A proximal interior point algorithm with applications to image processing. (English) Zbl 07255781 J. Math. Imaging Vis. 62, No. 6-7, 919-940 (2020). MSC: 90C51 68U10 90C25 94A08 PDF BibTeX XML Cite \textit{E. Chouzenoux} et al., J. Math. Imaging Vis. 62, No. 6--7, 919--940 (2020; Zbl 07255781) Full Text: DOI HAL OpenURL
Darvay, Zs.; Illés, T.; Kheirfam, B.; Rigó, P. R. A corrector-predictor interior-point method with new search direction for linear optimization. (English) Zbl 07252401 CEJOR, Cent. Eur. J. Oper. Res. 28, No. 3, 1123-1140 (2020). MSC: 90Bxx 90C05 90C51 PDF BibTeX XML Cite \textit{Zs. Darvay} et al., CEJOR, Cent. Eur. J. Oper. Res. 28, No. 3, 1123--1140 (2020; Zbl 07252401) Full Text: DOI OpenURL
Asadi, Soodabeh; Darvay, Zsolt; Lesaja, Goran; Mahdavi-Amiri, Nezam; Potra, Florian A full-Newton step interior-point method for monotone weighted linear complementarity problems. (English) Zbl 1441.90163 J. Optim. Theory Appl. 186, No. 3, 864-878 (2020). MSC: 90C33 90C51 PDF BibTeX XML Cite \textit{S. Asadi} et al., J. Optim. Theory Appl. 186, No. 3, 864--878 (2020; Zbl 1441.90163) Full Text: DOI OpenURL
Karimi, Mehdi; Tunçel, Levent Primal-dual interior-point methods for domain-driven formulations. (English) Zbl 1455.90127 Math. Oper. Res. 45, No. 2, 591-621 (2020). MSC: 90C25 90C51 49N15 65Y20 PDF BibTeX XML Cite \textit{M. Karimi} and \textit{L. Tunçel}, Math. Oper. Res. 45, No. 2, 591--621 (2020; Zbl 1455.90127) Full Text: DOI arXiv OpenURL
Natale, Andrea; Todeschi, Gabriele TPFA finite volume approximation of Wasserstein gradient flows. (English) Zbl 1454.65097 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 193-201 (2020). MSC: 65M08 65M06 65M12 49M29 35K65 90C51 PDF BibTeX XML Cite \textit{A. Natale} and \textit{G. Todeschi}, Springer Proc. Math. Stat. 323, 193--201 (2020; Zbl 1454.65097) Full Text: DOI arXiv HAL OpenURL
Kheirfam, Behrouz; Haghighi, Masoumeh A full-Newton step infeasible interior-point method based on a trigonometric kernel function without centering steps. (English) Zbl 1448.90059 Numer. Algorithms 85, No. 1, 59-75 (2020). MSC: 90C05 90C51 PDF BibTeX XML Cite \textit{B. Kheirfam} and \textit{M. Haghighi}, Numer. Algorithms 85, No. 1, 59--75 (2020; Zbl 1448.90059) Full Text: DOI OpenURL
Kardoš, Juraj; Kourounis, Drosos; Schenk, Olaf Structure-exploiting interior point methods. (English) Zbl 1455.65095 Grama, Ananth (ed.) et al., Parallel algorithms in computational science and engineering. Cham: Birkhäuser. Model. Simul. Sci. Eng. Technol., 63-93 (2020). MSC: 65K05 90C30 90C51 PDF BibTeX XML Cite \textit{J. Kardoš} et al., in: Parallel algorithms in computational science and engineering. Cham: Birkhäuser. 63--93 (2020; Zbl 1455.65095) Full Text: DOI arXiv OpenURL
Dai, Yu-Hong; Liu, Xin-Wei; Sun, Jie A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs. (English) Zbl 1449.90325 J. Ind. Manag. Optim. 16, No. 2, 1009-1035 (2020). MSC: 90C30 90C51 90C26 90C46 PDF BibTeX XML Cite \textit{Y.-H. Dai} et al., J. Ind. Manag. Optim. 16, No. 2, 1009--1035 (2020; Zbl 1449.90325) Full Text: DOI arXiv OpenURL
Bouafia, Mousaab; Yassine, Adnan An efficient twice parameterized trigonometric kernel function for linear optimization. (English) Zbl 1447.90018 Optim. Eng. 21, No. 2, 651-672 (2020). MSC: 90C05 90C31 90C51 PDF BibTeX XML Cite \textit{M. Bouafia} and \textit{A. Yassine}, Optim. Eng. 21, No. 2, 651--672 (2020; Zbl 1447.90018) Full Text: DOI OpenURL
Bueno, Luís Felipe; Haeser, Gabriel; Santos, Luiz-Rafael Towards an efficient augmented Lagrangian method for convex quadratic programming. (English) Zbl 1446.90122 Comput. Optim. Appl. 76, No. 3, 767-800 (2020). MSC: 90C20 90C25 90C51 PDF BibTeX XML Cite \textit{L. F. Bueno} et al., Comput. Optim. Appl. 76, No. 3, 767--800 (2020; Zbl 1446.90122) Full Text: DOI OpenURL
Tófoli, Marielena Fonseca; Soler, Edilaine Martins; Balbo, Antonio Roberto; Baptista, Edméa Cássia; Nepomuceno, Leonardo Interior/exterior-point methods with inertia correction strategy for solving optimal reactive power flow problems with discrete variables. (English) Zbl 1443.90329 Ann. Oper. Res. 286, No. 1-2, 243-263 (2020). MSC: 90C51 90C11 PDF BibTeX XML Cite \textit{M. F. Tófoli} et al., Ann. Oper. Res. 286, No. 1--2, 243--263 (2020; Zbl 1443.90329) Full Text: DOI Link OpenURL
Heredia, Manolo Rodriguez; Oliveira, Aurelio Ribeiro Leite A new proposal to improve the early iterations in the interior point method. (English) Zbl 1442.90201 Ann. Oper. Res. 287, No. 1, 185-208 (2020). MSC: 90C51 PDF BibTeX XML Cite \textit{M. R. Heredia} and \textit{A. R. L. Oliveira}, Ann. Oper. Res. 287, No. 1, 185--208 (2020; Zbl 1442.90201) Full Text: DOI OpenURL
Pirhaji, Mohammad; Zangiabadi, Maryam; Mansouri, Hossien; Nakhaei, Ali; Shojaeifard, Ali A wide neighborhood interior-point algorithm for convex quadratic semidefinite optimization. (English) Zbl 1449.90281 J. Oper. Res. Soc. China 8, No. 1, 145-164 (2020). MSC: 90C22 90C25 90C51 PDF BibTeX XML Cite \textit{M. Pirhaji} et al., J. Oper. Res. Soc. China 8, No. 1, 145--164 (2020; Zbl 1449.90281) Full Text: DOI OpenURL