×

Exact solutions and asymptotic solutions of one-dimensional domain walls in nonlinearly coupled system. (English) Zbl 1454.81146

Summary: We use homotopy renormalization method to investigate one-dimensional radial domain wall modes in the system of two nonlinear Schrödinger or Gross-Pitaevskii equations, which are coupled by linear mixing and by nonlinear XPM (cross-phase-modulation). The asymptotic solutions satisfying the boundary conditions are given by taking the inhomogeneous variable coefficient homotopy equations. To our knowledge, this is the first time that the inhomogeneous variable coefficient homotopy equations are taken. Moreover, the comparisons with numerical results show that our explicit function solutions have good performances in both local and large scale. In particular, in some conditions with special parameters, the asymptotic solutions are actually the exact solutions.

MSC:

81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T28 Thermal quantum field theory
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gell-Mann, M; Low, FE, Quantum electrodynamics at small distances, Phys. Rev., 95, 1300-1312, (1954) · Zbl 0057.21401 · doi:10.1103/PhysRev.95.1300
[2] Goldenfeld, N; Martin, O; Oono, Y; etal., Anomalous dimensions and the renormalization group in a nonlinear diffusion process, Phys. Rev. Lett., 64, 1361-1364, (1990) · doi:10.1103/PhysRevLett.64.1361
[3] Chen, LY; Goldenfeld, N; Oono, Y, Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory, Phys. Rev. E, 54, 376-394, (1996) · doi:10.1103/PhysRevE.54.376
[4] Kunihiro, T, A geometrical formulation of the renormalization group method for global analysis, Prog. Theor. Phys., 94, 503-514, (1995) · doi:10.1143/PTP.94.503
[5] Kunihiro, T, A geometrical formulation of the renormalization group method for global analysis II: partial differential equations, Jpn. J. Ind. Appl. Math., 14, 51-69, (1997) · Zbl 0941.35095 · doi:10.1007/BF03167310
[6] Kunihiro, T, The renormalization-group method applied to asymptotic analysis of vector fields, Prog. Theor. Phys., 97, 179-200, (1997) · doi:10.1143/PTP.97.179
[7] Tu, T; Cheng, G; Liu, JW, Anomalous dimension in the solution of a nonlinear diffusion equation, Commun. Theor. Phys., 36, 617-619, (2001) · doi:10.1088/0253-6102/36/5/617
[8] Tu, T; Cheng, G; Liu, JW, Anomalous dimension in the solution of the modified porous medium equation, Commun. Theor. Phys., 37, 741-744, (2002) · doi:10.1088/0253-6102/37/6/741
[9] Tu, T; Cheng, G; Liu, JW, Improvement of renormalization group for Barenblatt equation, Commun. Theor. Phys., 8, 290-294, (2004)
[10] Kai, Y, Global solutions to two nonlinear perturbed equations by renormalization group method, Phys. Scr., (2016) · doi:10.1088/0031-8949/91/2/025202
[11] Liu, CS, The renormalization method based on the Taylor expansion and applications for asymptotic analysis, Nonlinear Dyn., 88, 1099-1124, (2017) · Zbl 1375.35082 · doi:10.1007/s11071-016-3298-8
[12] Guan, J; Kai, Y, Asymptotic analysis to two nonlinear equations in fluid mechanics by homotopy renormalisation method, Zeitschrift Für Naturforschung A A J. Phys. Sci., 71, 863-868, (2016)
[13] Wang, CY; Gao, WJ, Asymptotic analysis of reduced Navier-Stokes equations by homotopy renormalization method, Rep. Math. Phys., 80, 29-37, (2017) · Zbl 1384.35069 · doi:10.1016/S0034-4877(17)30060-5
[14] Xin, H, Asymptotic analysis to a nonlinear problem on domain boundaries in conviction patterns by homotopy renormalization method, Zeitschrift Für Naturforschung A-A J. Phys. Sci., 72, 909-913, (2017)
[15] Liu, C.S.: The Renormalization Method from Continuous to Discrete Dynamical Systems: Asymptotic Solutions, Reductions and Invariant Manifolds (2017). arXiv:1702.08512v2 [math.CA]
[16] Dror, N; Malomed, BA; Zeng, J, Domain walls and vortices in linearly coupled systems, Phys. Rev. E, (2011) · doi:10.1103/PhysRevE.84.046602
[17] Malomed, BA, Domain wall between traveling waves, Phys. Rev. E, 50, 3310-3313, (1994) · doi:10.1103/PhysRevE.50.R3310
[18] Malomed, BA; Nepomnyshchy, AA; Tribelsky, MI, Domain boundaries in convection patterns, Phys. Rev. A, 42, 7244-7263, (1990) · doi:10.1103/PhysRevA.42.7244
[19] Bodenschatz, E; Pesch, W; Ahlers, G, Recent developments in Rayleigh-Bénard convection, Annu. Rev. Fluids Mech., 32, 709-778, (2000) · Zbl 0988.76033 · doi:10.1146/annurev.fluid.32.1.709
[20] Sakaguchi, H; Malomed, BA, Symmetry breaking of solitons in two-component Gross-Pitaevskii equations, Phys. Rev. E, (2011) · doi:10.1103/PhysRevE.83.036608
[21] Salasnich, L; Malomed, BA, Spontaneous symmetry breaking in linearly coupled disk-shaped Bose-Einstein condensates, Mol. Phys., 109, 2737-2745, (2011) · doi:10.1080/00268976.2011.602370
[22] Zegadlo, KB; Dror, N; Trippenbach, M; Malomed, BA, Spontaneous symmetry breaking of self-trapped and leaky modes in quasi-double-well potentials, Phys. Rev. A, (2016) · doi:10.1103/PhysRevA.93.023644
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.