×

Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. (English) Zbl 1448.81197

Summary: In this paper, we present an efficient scheme for remote state preparation of arbitrary \(n\)-qubit states with real coefficients. Quantum channel is composed of \(n\) maximally two-qubit entangled states, and several appropriate mutually orthogonal bases including the real parameters of prepared states are delicately constructed without the introduction of auxiliary particles. It is noted that the successful probability is 100% by using our proposal under the condition that the parameters of prepared states are all real. Compared to general states, the probability of our protocol is improved at the cost of the information reduction in the transmitted state.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
81P40 Quantum coherence, entanglement, quantum correlations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lo, HK, Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity, Phys. Rev. A, 62, 012313, (2000) · doi:10.1103/PhysRevA.62.012313
[2] Bennett, CH; Brassard, G; Grepeau, C; Jozsa, R; Peres, A; Wootters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895, (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[3] Dai, HY; Chen, PX; Li, CZ, Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states, J. Opt. B, 6, 106, (2004) · doi:10.1088/1464-4266/6/1/017
[4] Zhang, D; Zha, XW; Duan, YJ, Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state, Quantum Inf. Process., 14, 3835, (2015) · Zbl 1327.81113 · doi:10.1007/s11128-015-1067-0
[5] Wang, ZY; Liu, YM; Zuo, XQ; Zhang, ZJ, Controlled remote state preparation, Commun. Theor. Phys., 522, 235, (2009) · Zbl 1183.81049
[6] Liu, LL; Hwang, T, Controlled remote state preparation protocols via AKLT states, Quantum Inf. Process., 13, 1639, (2014) · Zbl 1303.81037 · doi:10.1007/s11128-014-0757-3
[7] Dai, HY; Chen, PX; Liang, LM; Li, CZ, Classical communication cost and remote preparation of the four-particle GHZ class state, Phys. Lett. A, 355, 285, (2006) · doi:10.1016/j.physleta.2006.02.050
[8] Wang, D; Ye, L, Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements, Int. J. Theor. Phys., 52, 3075, (2013) · Zbl 1276.81019 · doi:10.1007/s10773-013-1599-y
[9] Luo, MX; Chen, XB; Ma, SY; Niu, XX; Yang, YX, Joint remote preparation of an arbitrary three-qubit state, Opt. Commun., 283, 4796, (2010) · doi:10.1016/j.optcom.2010.07.043
[10] Peng, JY; Luo, MX; Mo, ZW, Joint remote state preparation of arbitrary two-particle states via GHZ-type states, Quantum Inf. Process., 12, 2325, (2013) · Zbl 1270.81047 · doi:10.1007/s11128-013-0530-z
[11] Choudhury, BS; Dhara, A, Joint remote state preparation for two-qubit equatorial states, Quantum Inf. Process., 14, 373, (2015) · Zbl 1311.81050 · doi:10.1007/s11128-014-0835-6
[12] Wang, D; Ye, L, Multiparty-controlled joint remote preparation, Quantum Inf. Process., 12, 3223, (2013) · Zbl 1286.81035 · doi:10.1007/s11128-013-0595-8
[13] Xia, Y; Song, J; Song, HS, Multiparty remote state preparation, J. Phys. B, 40, 3719, (2007) · doi:10.1088/0953-4075/40/18/011
[14] Wang, D; Hu, YD; Huang, ZQ; Ye, L, Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states, Quantum Inf. Process., 14, 2135, (2015) · Zbl 1317.81054 · doi:10.1007/s11128-015-0966-4
[15] Dai, HY; Zhang, M; Kuang, LM, Classical communication cost and remote preparation of multi-qubit with three-party, Commun. Theor. Phys., 50, 73, (2008) · Zbl 1392.81056 · doi:10.1088/0253-6102/50/1/15
[16] Dai, HY; Zhang, M; Zhang, ZR; Xi, ZR, Probabilistic remote preparation of a four-particle entangled W state for the general case and for all kinds of the special cases, Commun. Theor. Phys., 60, 313, (2013) · Zbl 1284.81055 · doi:10.1088/0253-6102/60/3/10
[17] Wang, D; Hoehn, RD; Ye, L; Kais, S, Generalized remote preparation of arbitrary \(m\)-qubit entangled states via genuine entanglements, Entropy, 17, 1755, (2015) · doi:10.3390/e17041755
[18] Wang, D; Huang, AJ; Sun, WY; Shi, JD; Ye, L, Practical single-photon-assisted remote state preparation with non-maximally entanglement, Quantum Inf. Process., 15, 3367, (2016) · Zbl 1348.81150 · doi:10.1007/s11128-016-1346-4
[19] Wang, D; Hoehn, RD; Ye, L; Kais, S, Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels, Int. J. Theor. Phys., 55, 3454, (2016) · Zbl 1358.81063 · doi:10.1007/s10773-016-2972-4
[20] Berry, DW; Sanders, BC, Optimal remote state preparation, Phys. Rev. Lett., 90, 057901, (2003) · doi:10.1103/PhysRevLett.90.057901
[21] Wei, JH; Dai, HY; Zhang, M, Two efficient schemes for probabilistic remote state preparation and the combination of both schemes, Quantum Inf. Process., 13, 2115, (2014) · Zbl 1305.81045 · doi:10.1007/s11128-014-0799-6
[22] Li, XH; Ghose, S, Optimal joint remote state preparation of equatorial states, Quantum Inf. Process., 14, 4585, (2015) · Zbl 1333.81079 · doi:10.1007/s11128-015-1141-7
[23] Wei, JH; Shi, L; Xue, Y; Xu, ZY; Jiang, J, Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states, Quantum Inf. Process., 17, 70, (2018) · Zbl 1386.81038 · doi:10.1007/s11128-018-1837-6
[24] Zhang, D; Zha, XW; Duan, YJ; Yang, YQ, Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state, Quantum Inf. Process., 15, 2169, (2016) · Zbl 1338.81123 · doi:10.1007/s11128-016-1265-4
[25] Dai, HY; Chen, PX; Zhang, M; Li, CZ, Remote preparation of an entangled two-qubit state with three parties, Chin. Phys. B, 17, 27, (2008) · doi:10.1088/1674-1056/17/1/005
[26] Peng, X; Zhu, X; Fang, X; Feng, M; Liu, M; Gao, K, Experimental implementation of remote state preparartion by nucler magtic resonance, Phys. Lett. A, 306, 271, (2003) · doi:10.1016/S0375-9601(02)01604-3
[27] Xiang, GY; Li, J; Bo, Y; Guo, GC, Remote preparation of mixed states via noisy entanglement, Phys. Rev. A, 72, 012315, (2005) · doi:10.1103/PhysRevA.72.012315
[28] Rosenfeld, W; Berner, S; Volz, J; Weber, M; Weinfurter, H, Remote preparation of an atomic quantum memory, Phys. Rev. Lett., 98, 050504, (2007) · doi:10.1103/PhysRevLett.98.050504
[29] Barreiro, JT; Wei, TC; Kwiat, PG, Remote preparation of single-photon hybrid entangled and vector-polarization states, Phys. Rev. Lett., 105, 030407, (2010) · doi:10.1103/PhysRevLett.105.030407
[30] Jiang, M; Dong, DY, A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states, J. Phys. B, 45, 205506, (2012) · doi:10.1088/0953-4075/45/20/205506
[31] Kang, P; Dai, HY; Wei, JH; Zhang, M, Optimal quantum cloning based on the maximin principle by using a priori information, Phys. Rev. A, 94, 042304, (2016) · doi:10.1103/PhysRevA.94.042304
[32] Wei, JH; Shi, L; Ma, LH; Xue, Y; Zhuang, XC; Li, XS; Kang, QY, Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states, Quantum Inf. Process., 16, 260, (2017) · Zbl 1387.81087 · doi:10.1007/s11128-017-1708-6
[33] Zheng, SB; Guo, GC, Teleportation of atomic states within cavities in thermal states, Phys. Rev. A, 63, 044302, (2001) · doi:10.1103/PhysRevA.63.044302
[34] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.