×

Generating and using truly random quantum states in Mathematica. (English) Zbl 1263.81116

Summary: The problem of generating random quantum states is of a great interest from the quantum information theory point of view. In this paper we present a package for Mathematica computing system harnessing a specific piece of hardware, namely Quantis quantum random number generator (QRNG), for investigating statistical properties of quantum states. The described package implements a number of functions for generating random states, which use Quantis QRNG as a source of randomness. It also provides procedures which can be used in simulations not related directly to quantum information processing.

MSC:

81P68 Quantum computation
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
65C10 Random number generation in numerical analysis
81-08 Computational methods for problems pertaining to quantum theory
68N30 Mathematical aspects of software engineering (specification, verification, metrics, requirements, etc.)
68Q12 Quantum algorithms and complexity in the theory of computing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Quantiki, List of QC simulators
[2] Bengtsson, I.; Życzkowski, K., Geometry of Quantum States (2006), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1146.81004
[3] Calude, C. S.; Dinneen, M. J.; Dumitrescu, M.; Svozil, K., Experimental evidence of quantum randomness incomputability, Phys. Rev. A, 82, 2, 022102 (2010)
[4] Touchette, H.; Dumais, P., The quantum computation package for Mathematica 4.0
[5] Juliá-Díaz, B.; Burdis, J. M.; Tabakin, F., QDENSITY—a Mathematica quantum computer simulation, Comp. Phys. Comm., 174, 914-934 (2006) · Zbl 1196.68082
[6] Gómez-Muñoz, J. L.; Delgado-Cepeda, F., Quantum 2.0 for Mathematica 7
[7] Miszczak, J. A.; Puchała, Z.; Gawron, P., QI package for Mathematica, 2010, software freely available at
[8] Juliá-Díaz, B.; Tabakin, F., QCWAVE, a mathematica quantum computer simulation update · Zbl 1262.81036
[9] Gutiérrez, E.; Romero, S.; Trenas, M. A.; Zapata, E. L., Quantum computer simulation using the cuda programming model, Comp. Phys. Comm., 181, 2, 283-300 (2010) · Zbl 1205.81060
[10] I. Glendinning, B. Ömer, Parallelization of the QC-lib quantum computer simulator library, in: R. Wyrzykowski, et al. (Eds.), 5th International Conference on Parallel Processing and Applied Mathematics, in: LNCS, vol. 3019, 2004, pp. 461-468.; I. Glendinning, B. Ömer, Parallelization of the QC-lib quantum computer simulator library, in: R. Wyrzykowski, et al. (Eds.), 5th International Conference on Parallel Processing and Applied Mathematics, in: LNCS, vol. 3019, 2004, pp. 461-468. · Zbl 1128.68344
[11] De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N., Massively parallel quantum computer simulator, Comp. Phys. Comm., 176, 2, 121-136 (2007) · Zbl 1196.81094
[12] Tabakin, F.; Juliá-Díaz, B., QCMPI: A parallel environment for quantum computing, Comp. Phys. Comm., 180, 6, 948-964 (2009) · Zbl 1198.81023
[13] Fürst, M.; Weier, H.; Nauerth, S.; Marangon, D. G.; Kurtsiefer, Ch.; Weinfurter, H., High speed optical quantum random number generation, Optics Express, 18, 12, 13029-13037 (2010)
[14] Heinosaari, T.; Ziman, M., Guide to mathematical concepts of quantum theory, Acta Phys. Slovaca, 58, 4, 487-674 (2008)
[15] Życzkowski, K.; Penson, K. A.; Nechita, I.; Collins, B., Generating random density matrices, J. Math. Phys., 52, 062201 (2011) · Zbl 1317.81041
[16] Życzkowski, K.; Sommers, H.-J., Hilbert-Schmidt volume of the set of mixed quantum states, J. Phys. A: Math. Theor., 36, 39, 10115 (2003) · Zbl 1052.81012
[17] Życzkowski, K.; Sommers, H.-J., Average fidelity between random quantum states, Phys. Rev. A, 71, 3, 032313 (2005) · Zbl 1227.81063
[18] Al Osipov, V.; Sommers, H.-J.; Życzkowski, K., Random Bures mixed states and the distribution of their purity, J. Phys. A: Math. Theor., 43, 055302 (2010) · Zbl 1186.81033
[19] ID Quantique SA
[20] Quantis support page
[21] Bruzda, W.; Cappellini, V.; Sommers, H.-J.; Życzkowski, K., Random quantum operations, Phys. Lett. A, 373, 3, 320 (2009) · Zbl 1227.81019
[22] J.A. Miszczak, Singular value decomposition and matrix reorderings in quantum information theory, Int. J. Mod. Phys. C (2011), in press, doi:10. 1142/S0129183111016683; J.A. Miszczak, Singular value decomposition and matrix reorderings in quantum information theory, Int. J. Mod. Phys. C (2011), in press, doi:10. 1142/S0129183111016683 · Zbl 1262.81010
[23] Markham, D.; Miszczak, J. A.; Puchała, Z.; Życzkowski, K., Quantum state discrimination: A geometric approach, Phys. Rev. A, 77, 042111 (2008)
[24] B. Ömer, Quantum programming in QCL, Masterʼs thesis, Vienna University of Technology, 2000.; B. Ömer, Quantum programming in QCL, Masterʼs thesis, Vienna University of Technology, 2000.
[25] Marquezino, F. L.; Portugal, R., The QWalk simulator of quantum walks, Comp. Phys. Comm., 179, 5, 359-369 (2008) · Zbl 1197.81090
[26] Symul, T.; Assad, S. M.; Lam, P. K., Real time demonstration of high bitrate quantum random number generation with coherent laser light, Appl. Phys. Lett., 98, 23, 231103 (2011)
[27] Service, Q. R.N. G., Project developed by PicoQuant GmbH and the Nano-Optics groups at the Department of Physics of Humboldt University
[28] Quantum Random Bit Generator Service, Project developed by Centre for Informatics and Computing, Ruder Bošković Institute, Zagreb, Croatia
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.