×

Quantum tomography by regularized linear regressions. (English) Zbl 1441.81020

Summary: In this paper, we study extended linear regression approaches for quantum state tomography based on regularization techniques. For unknown quantum states represented by density matrices, performing measurements under certain basis yields random outcomes, from which a classical linear regression model can be established. First of all, for complete or over-complete measurement bases, we show that the empirical data can be utilized for the construction of a weighted least squares estimate (LSE) for quantum tomography. Taking into consideration the trace-one condition, a constrained weighted LSE can be explicitly computed, being the optimal unbiased estimation among all linear estimators. Next, for general measurement bases, we show that \(\ell_2\)-regularization with proper regularization gain provides even a lower mean-square error under a cost in bias. The optimal regularization parameter is defined in terms of a risk characterization for any finite sample size and a resulting implementable estimator is proposed. Finally, a concise and unified formula is established for the regularization parameter with complete measurement basis under an equivalent regression model, which proves that the proposed implementable tuning estimator is asymptotically optimal as the number of copies grows to infinity. Additionally, several numerical examples are provided to validate the established results.

MSC:

81P18 Quantum state tomography, quantum state discrimination
81P16 Quantum state spaces, operational and probabilistic concepts
81P15 Quantum measurement theory, state operations, state preparations
81P50 Quantum state estimation, approximate cloning
93E24 Least squares and related methods for stochastic control systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahnert, S. E.; Payne, M. C., All possible bipartite positive-operator-value measurements of two-photon polarization states, Physical Review A, 73, 022333 (2006)
[2] Alquier, P.; Butucea, C.; Hebiri, M.; Meziani, K., Rank penalized estimation of a quantum system, Physical Review A, 88, 032133 (2013)
[3] Amemiya, T., Advanced econometrics (1985), Harvard University Press
[4] Artiles, L. M.; Gill, R. D.; Guta, M. I., An invitation to quantum tomography, Journal of the Royal Statistical Society Series B Statistical Methodology, 67, 109-134 (2005) · Zbl 1060.62137
[5] Bisio, A.; Chiribella, G.; D’Ariano, G. M.; Facchini, S.; Perinotti, P., Optimal quantum tomography of states, measurements, and transformations, Physical Review Letters, 102, 010404 (2009)
[6] Blume-Kohout, R., Hedged maximum likelihood quantum state estimation, Physical Review Letters, 105, 200504 (2010)
[7] Bonnabel, S.; Mirrahimi, M.; Rouchon, P., Observer-based hamiltonian identification for quantum systems, Automatica, 45, 5, 1144-1155 (2009) · Zbl 1162.93020
[8] Cai, T.; Kim, D.; Wang, Y.; Yuan, M.; Zhou, H. H., Optimal large-scale quantum state tomography with Pauli measurements, The Annals of Statistics, 44, 2, 682-712 (2016) · Zbl 1341.62116
[9] Chiuso, A., Regularization and Bayesian learning in dynamical systems: Past, present and future, Annual Reviews in Control, 41, 24-38 (2016)
[10] Goodfellow, I.; Bengio, Y.; Courville, A., Deep learning (2016), The MIT Press · Zbl 1373.68009
[11] Gross, D., Recovering low-rank matrices from few coefficients in any basis, IEEE Transactions on Information Theory, 57, 3, 1548-1566 (2011) · Zbl 1366.94103
[12] Gross, D.; Liu, Y.-K.; Flammia, S.; S. Becker, J. E., Quantum state tomography via compressed sensing, Physical Review Letters, 105, 150401 (2010)
[13] James, D. F.V.; Kwiat, P. G.; Munro, W. J.; White, A. G., Measurement of qubits, Physical Review A, 64, 052312 (2001)
[14] Leghtas, Z.; Turinici, G.; Rabitz, H.; Rouchon, P., Hamiltonian identification through enhanced observability utilizing quantum control, IEEE Transactions on Automatic Control, 57, 10, 2679-2683 (2012) · Zbl 1369.93161
[15] Ljung, L., System identification: theory for the user (1999), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ
[16] Nielsen, M. A.; Chuang, I. L., Quantum computation and quantum information (2001), Cambridge University Press: Cambridge University Press Cambridge, England
[17] Petersen, K. B.; Pedersen, M. S., The matrix cookbook (2012), http://matrixcookbook.com
[18] Qi, B.; Hou, Z.; Li, L.; Dong, D.; Xiang, G.; Guo, G., Quantum state tomography via linear regression estimation, Scientific Reports, 3, 3496 (2013)
[19] Qi, B.; Hou, Z.; Wang, Y.; Dong, D.; Zhong, H.-S.; Li, L., Adaptive quantum state tomography via linear regression estimation: theory and two-qubit experiment, npj Quantum Information, 3, 19 (2017)
[20] Rao, C. R.; Toutenburg, H.; Shalabh, Y.; Heumann, C., Linear models and generalizations: least squares and alternatives (2008), Springer: Springer Berlin Heidelberg · Zbl 1151.62063
[21] Recht, B.; Fazel, M.; Parrilo, P. A., Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Review, 52, 3, 471-501 (2010) · Zbl 1198.90321
[22] Senko, C.; Smith, J.; Richerme, P.; Lee, A.; Campbell, W. C.; Monroe, C., Coherent imaging spectroscopy of a quantum many-body spin system, Science, 345, 430-433 (2014) · Zbl 1355.81191
[23] Shalev-Shwartz, S., Online learning and online convex optimization, Foundations and Trends in Machine Learning, 4, 2, 107-194 (2012) · Zbl 1253.68190
[24] Smolin, J. A.; Gambetta, J. M.; Smith, G., Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise, Physical Review Letters, 108, 070502 (2012)
[25] Teo, Y. S.; Zhu, H.; Englert, B. G.; Rehacek, J.; Hradil, Z., Quantum-state reconstruction by maximizing likelihood and entropy, Physical Review Letters, 107, 020404 (2011)
[26] Theil, H., Principles of econometrics (1971), John Wiley & Sons, Inc. · Zbl 0221.62002
[27] Wang, Y., Asymptotic equivalence of quantum state tomography and noisy matrix completion, The Annals of Statistics, 41, 2462-2504 (2013) · Zbl 1294.62006
[28] Wang, Y.; Dong, D.; Qi, B.; Zhang, J.; Petersen, I. R.; Yonezawa, H., A quantum hamiltonian identification algorithm: Computational complexity and error analysis, IEEE Transactions on Automatic Control, 63, 5, 1388-1403 (2018) · Zbl 1395.81092
[29] Wang, Y.; Yin, Q.; Dong, D.; Qi, B.; Petersen, I. R.; Hou, Z., Quantum gate identification: Error analysis, numerical results and optical experiment, Automatica, 101, 269-279 (2019) · Zbl 1414.81079
[30] Wootters, W. K.; Fields, B. D., Optimal state-determination by mutually unbiased measurements, Annalen der Physik, 191, 363-381 (1989)
[31] Xue, S.; Zhang, J.; Petersen, I. R., Identification of non-Markovian environments for spin chains, IEEE Transactions on Control Systems Technology, 27, 6, 2574-2580 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.