×

Light dark matter from entropy dilution. (English) Zbl 1435.85009

Summary: We show that a thermal relic which decouples from the standard model (SM) plasma while relativistic can be a viable dark matter (DM) candidate, if the decoupling is followed by a period of entropy dilution that heats up the SM, but not the dark sector. Such diluted hot relics can be as light as few keV, while accounting for the entirety of the DM, and not conflicting with cosmological and astrophysical measurements. The requisite dilution can be achieved via decays of a heavy state that dominates the energy budget of the universe in the early matter dominated era. The heavy state decays into the SM particles, heats up the SM plasma, and dilutes the hidden sector. The interaction required to equilibrate the two sectors in the early universe places a bound on the maximum possible dilution as a function of the decoupling temperature. As an example of diluted hot relic DM we consider a light Dirac fermion with a heavy dark photon mediator. We present constraints on the model from terrestrial experiments (current and future), astrophysics, and cosmology.

MSC:

85A40 Astrophysical cosmology
83C56 Dark matter and dark energy
81P17 Quantum entropies
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Buckley, MR; Peter, AHG, Gravitational probes of dark matter physics, Phys. Rept., 761, 1 (2018)
[2] G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept.405 (2005) 279 [hep-ph/0404175] [INSPIRE].
[3] P.D. Serpico and G.G. Raffelt, MeV-mass dark matter and primordial nucleosynthesis, Phys. Rev.D 70 (2004) 043526 [astro-ph/0403417] [INSPIRE].
[4] Ho, CM; Scherrer, RJ, Limits on MeV Dark Matter from the Effective Number of Neutrinos, Phys. Rev., D 87 (2013)
[5] Boehm, C.; Dolan, MJ; McCabe, C., A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, JCAP, 08, 041 (2013)
[6] Nollett, KM; Steigman, G., BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs, Phys. Rev., D 89 (2014)
[7] Nollett, KM; Steigman, G., BBN And The CMB Constrain Neutrino Coupled Light WIMPs, Phys. Rev., D 91 (2015)
[8] Green, D.; Rajendran, S., The Cosmology of Sub-MeV Dark Matter, JHEP, 10, 013 (2017)
[9] Depta, PF; Hufnagel, M.; Schmidt-Hoberg, K.; Wild, S., BBN constraints on the annihilation of MeV-scale dark matter, JCAP, 04, 029 (2019)
[10] Sabti, N.; Alvey, J.; Escudero, M.; Fairbairn, M.; Blas, D., Refined Bounds on MeV-scale Thermal Dark Sectors from BBN and the CMB, JCAP, 01, 004 (2020)
[11] Berlin, A.; Blinov, N., Thermal Dark Matter Below an MeV, Phys. Rev. Lett., 120 (2018)
[12] Berlin, A.; Blinov, N., Thermal neutrino portal to sub-MeV dark matter, Phys. Rev., D 99 (2019)
[13] Berlin, A.; Blinov, N.; Li, SW, Dark Sector Equilibration During Nucleosynthesis, Phys. Rev., D 100 (2019)
[14] T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev.D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
[15] Griest, K.; Seckel, D., Three exceptions in the calculation of relic abundances, Phys. Rev., D 43, 3191 (1991)
[16] D’Agnolo, RT; Ruderman, JT, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett., 115 (2015)
[17] D’Agnolo, RT; Pappadopulo, D.; Ruderman, JT, Fourth Exception in the Calculation of Relic Abundances, Phys. Rev. Lett., 119 (2017)
[18] D’Agnolo, RT; Mondino, C.; Ruderman, JT; Wang, P-J, Exponentially Light Dark Matter from Coannihilation, JHEP, 08, 079 (2018)
[19] Krnjaic, G., Probing Light Thermal Dark-Matter With a Higgs Portal Mediator, Phys. Rev., D 94 (2016)
[20] Pospelov, M.; Ritz, A.; Voloshin, MB, Secluded WIMP Dark Matter, Phys. Lett., B 662, 53 (2008)
[21] Evans, JA; Gori, S.; Shelton, J., Looking for the WIMP Next Door, JHEP, 02, 100 (2018)
[22] C. Pallis, Massive particle decay and cold dark matter abundance, Astropart. Phys.21 (2004) 689 [hep-ph/0402033] [INSPIRE].
[23] G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev.D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].
[24] G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The Effect of a late decaying scalar on the neutralino relic density, Phys. Rev.D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].
[25] Gelmini, GB; Gondolo, P., Ultra-cold WIMPs: relics of non-standard pre-BBN cosmologies, JCAP, 10, 002 (2008)
[26] Arcadi, G.; Ullio, P., Accurate estimate of the relic density and the kinetic decoupling in non-thermal dark matter models, Phys. Rev., D 84 (2011)
[27] Hamdan, S.; Unwin, J., Dark Matter Freeze-out During Matter Domination, Mod. Phys. Lett., A 33, 1850181 (2018)
[28] Bramante, J.; Unwin, J., Superheavy Thermal Dark Matter and Primordial Asymmetries, JHEP, 02, 119 (2017) · Zbl 1377.85012
[29] Cirelli, M.; Gouttenoire, Y.; Petraki, K.; Sala, F., Homeopathic Dark Matter, or how diluted heavy substances produce high energy cosmic rays, JCAP, 02, 014 (2019)
[30] Allahverdi, R.; Osiński, JK, Nonthermal dark matter from modified early matter domination, Phys. Rev., D 99 (2019)
[31] Acharya, BS; Kane, G.; Watson, S.; Kumar, P., A Non-thermal WIMP Miracle, Phys. Rev., D 80 (2009)
[32] Randall, L.; Scholtz, J.; Unwin, J., Flooded Dark Matter and S Level Rise, JHEP, 03, 011 (2016) · Zbl 1388.83943
[33] Gelmini, G.; Osoba, E.; Palomares-Ruiz, S.; Pascoli, S., MeV sterile neutrinos in low reheating temperature cosmological scenarios, JCAP, 10, 029 (2008)
[34] F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino Dark Matter in gauge extensions of the Standard Model, Phys. Rev.D 81 (2010) 085032 [arXiv:0912.4415] [INSPIRE].
[35] Nemevšek, M.; Senjanović, G.; Zhang, Y., Warm Dark Matter in Low Scale Left-Right Theory, JCAP, 07, 006 (2012)
[36] Patwardhan, AV; Fuller, GM; Kishimoto, CT; Kusenko, A., Diluted equilibrium sterile neutrino dark matter, Phys. Rev., D 92, 103509 (2015)
[37] Visinelli, L.; Gondolo, P., Axion cold dark matter in non-standard cosmologies, Phys. Rev., D 81 (2010)
[38] Ramberg, N.; Visinelli, L., Probing the Early Universe with Axion Physics and Gravitational Waves, Phys. Rev., D 99, 123513 (2019)
[39] Kohri, K.; Mazumdar, A.; Sahu, N., Inflation, baryogenesis and gravitino dark matter at ultra low reheat temperatures, Phys. Rev., D 80, 103504 (2009)
[40] Kane, G.; Winkler, MW, Baryogenesis from a Modulus Dominated Universe, JCAP, 02, 019 (2020) · Zbl 1489.83081
[41] D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem, Phys. Rev.D 53 (1996) 1784 [hep-ph/9510204] [INSPIRE].
[42] Davoudiasl, H.; Hooper, D.; McDermott, SD, Inflatable Dark Matter, Phys. Rev. Lett., 116 (2016)
[43] T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys.B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].
[44] S.D. Thomas, Baryons and dark matter from the late decay of a supersymmetric condensate, Phys. Lett.B 356 (1995) 256 [hep-ph/9506274] [INSPIRE].
[45] T. Moroi, M. Yamaguchi and T. Yanagida, On the solution to the Polonyi problem with 0 (10-TeV) gravitino mass in supergravity, Phys. Lett.B 342 (1995) 105 [hep-ph/9409367] [INSPIRE].
[46] R. Allahverdi and M. Drees, Production of massive stable particles in inflaton decay, Phys. Rev. Lett.89 (2002) 091302 [hep-ph/0203118] [INSPIRE].
[47] T. Moroi and T. Takahashi, Cosmic density perturbations from late decaying scalar condensations, Phys. Rev.D 66 (2002) 063501 [hep-ph/0206026] [INSPIRE].
[48] Lahanas, AB, Dilaton dominance in the early Universe dilutes Dark Matter relic abundances, Phys. Rev., D 83, 103523 (2011)
[49] M. Fujii and K. Hamaguchi, Nonthermal dark matter via Affleck-Dine baryogenesis and its detection possibility, Phys. Rev.D 66 (2002) 083501 [hep-ph/0205044] [INSPIRE].
[50] Co, RT; D’Eramo, F.; Hall, LJ; Pappadopulo, D., Freeze-In Dark Matter with Displaced Signatures at Colliders, JCAP, 12, 024 (2015)
[51] Evans, JA; Shelton, J., Long-Lived Staus and Displaced Leptons at the LHC, JHEP, 04, 056 (2016)
[52] Kofman, Lev; Linde, Andrei; Starobinsky, Alexei A., Towards the theory of reheating after inflation, Physical Review D, 56, 6, 3258-3295 (1997)
[53] Evans, JA; Gaidau, C.; Shelton, J., Leak-in Dark Matter, JHEP, 01, 032 (2020)
[54] Iršič, V., New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev., D 96 (2017)
[55] M. Viel, M.G. Haehnelt and V. Springel, Inferring the dark matter power spectrum from the Lyman-alpha forest in high-resolution QSO absorption spectra, Mon. Not. Roy. Astron. Soc.354 (2004) 684 [astro-ph/0404600] [INSPIRE].
[56] Bae, KJ; Kamada, A.; Liew, SP; Yanagi, K., Light axinos from freeze-in: production processes, phase space distributions and Ly-α forest constraints, JCAP, 01, 054 (2018)
[57] Kamada, A.; Yanagi, K., Constraining FIMP from the structure formation of the Universe: analytic mapping from m_WDM, JCAP, 11, 029 (2019)
[58] Bode, Paul; Ostriker, Jeremiah P.; Turok, Neil, Halo Formation in Warm Dark Matter Models, The Astrophysical Journal, 556, 1, 93-107 (2001)
[59] Tremaine, S.; Gunn, JE, Dynamical Role of Light Neutral Leptons in Cosmology, Phys. Rev. Lett., 42, 407 (1979)
[60] Madsen, J., Generalized Tremaine-Gunn limits for bosons and fermions, Phys. Rev. D, 44, 999 (1991)
[61] Boyarsky, A.; Ruchayskiy, O.; Iakubovskyi, D., A Lower bound on the mass of Dark Matter particles, JCAP, 03, 005 (2009)
[62] Alpher, RA; Bethe, H.; Gamow, G., The origin of chemical elements, Phys. Rev., 73, 803 (1948)
[63] Alpher, RA; Herman, RC, Theory of the Origin and Relative Abundance Distribution of the Elements, Rev. Mod. Phys., 22, 153 (1950) · Zbl 0036.28802
[64] Walker, TP; Steigman, G.; Schramm, DN; Olive, KA; Kang, H-S, Primordial nucleosynthesis redux, Astrophys. J., 376, 51 (1991)
[65] Pospelov, M.; Pradler, J., Big Bang Nucleosynthesis as a Probe of New Physics, Ann. Rev. Nucl. Part. Sci., 60, 539 (2010)
[66] Cyburt, RH; Fields, BD; Olive, KA; Yeh, T-H, Big Bang Nucleosynthesis: 2015, Rev. Mod. Phys., 88 (2016)
[67] de Salas, PF; Lattanzi, M.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O., Bounds on very low reheating scenarios after Planck, Phys. Rev., D 92, 123534 (2015)
[68] Barenboim, G.; Park, W-I, Lepton number asymmetries and the lower bound on the reheating temperature, JCAP, 12, 037 (2017)
[69] Mangano, Gianpiero; Miele, Gennaro; Pastor, Sergio; Pinto, Teguayco; Pisanti, Ofelia; Serpico, Pasquale D., Relic neutrino decoupling including flavour oscillations, Nuclear Physics B, 729, 1-2, 221-234 (2005)
[70] Stueckelberg, ECG, Interaction forces in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta, 11, 299 (1938)
[71] D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z-prime Extension with Kinetic Mixing and Milli-Charged Dark Matter From the Hidden Sector, Phys. Rev.D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].
[72] Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
[73] M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in U.S. Cosmic Visions: New Ideas in Dark Matter, College Park, MD, U.S.A., 23-25 March 2017 (2017) [arXiv:1707.04591] [INSPIRE].
[74] Emken, T.; Essig, R.; Kouvaris, C.; Sholapurkar, M., Direct Detection of Strongly Interacting Sub-GeV Dark Matter via Electron Recoils, JCAP, 09, 070 (2019)
[75] Hochberg, Y.; Charaev, I.; Nam, S-W; Verma, V.; Colangelo, M.; Berggren, KK, Detecting Sub-GeV Dark Matter with Superconducting Nanowires, Phys. Rev. Lett., 123, 151802 (2019)
[76] R.M. Geilhufe, F. Kahlhoefer and M.W. Winkler, Dirac Materials for Sub-MeV Dark Matter Detection: New Targets and Improved Formalism, arXiv:1910.02091 [INSPIRE].
[77] BaBar collaboration, Search for a Dark Photon in e^+e^−Collisions at BaBar, Phys. Rev. Lett.113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
[78] W. Barter, Higgs Searches, Electroweak Measurements, and the B anomalies, in Higgs Couplings (2019), Oxford, U.K., 30 September-4 October 2019 [https://indico.cern.ch/ event/796574/contributions/3375759/attachments/1917343/3170583/HiggsCouplings.pdf ].
[79] Bjorken, JD, Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev., D 38, 3375 (1988)
[80] Andreas, S.; Niebuhr, C.; Ringwald, A., New Limits on Hidden Photons from Past Electron Beam Dumps, Phys. Rev., D 86 (2012)
[81] LSND collaboration, Results for ν_μ → ν_eoscillations from pion decay in flight neutrinos, Phys. Rev.C 58 (1998) 2489 [nucl-ex/9706006] [INSPIRE].
[82] Essig, R.; Harnik, R.; Kaplan, J.; Toro, N., Discovering New Light States at Neutrino Experiments, Phys. Rev., D 82, 113008 (2010)
[83] Blümlein, J.; Brunner, J., New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data, Phys. Lett., B 731, 320 (2014)
[84] CHARM collaboration, Search for Axion Like Particle Production in 400 GeV Proton-Copper Interactions, Phys. Lett.157B (1985) 458 [INSPIRE].
[85] Gninenko, SN, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, Phys. Lett., B 713, 244 (2012)
[86] Gardner, S.; Holt, RJ; Tadepalli, AS, New Prospects in Fixed Target Searches for Dark Forces with the SeaQuest Experiment at Fermilab, Phys. Rev., D 93, 115015 (2016)
[87] Berlin, A.; Blinov, N.; Gori, S.; Schuster, P.; Toro, N., Cosmology and Accelerator Tests of Strongly Interacting Dark Matter, Phys. Rev., D 97 (2018)
[88] Berlin, A.; Gori, S.; Schuster, P.; Toro, N., Dark Sectors at the Fermilab SeaQuest Experiment, Phys. Rev., D 98 (2018)
[89] Y.-D. Tsai, P. deNiverville and M.X. Liu, The High-Energy Frontier of the Intensity Frontier: Closing the Dark Photon, Inelastic Dark Matter and Muon g − 2 Windows, arXiv:1908.07525 [INSPIRE].
[90] BaBar collaboration, Search for Invisible Decays of a Dark Photon Produced in e^+e^−Collisions at BaBar, Phys. Rev. Lett.119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
[91] Belle-II collaboration, The Belle II Physics Book, PTEP2019 (2019) 123C01 [arXiv:1808.10567] [INSPIRE].
[92] Dolan, MJ; Ferber, T.; Hearty, C.; Kahlhoefer, F.; Schmidt-Hoberg, K., Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP, 12, 094 (2017)
[93] Banerjee, D., Dark matter search in missing energy events with NA64, Phys. Rev. Lett., 123, 121801 (2019)
[94] LDMX collaboration, Light Dark Matter eXperiment (LDMX), arXiv:1808.05219 [INSPIRE].
[95] Chang, JH; Essig, R.; McDermott, SD, Revisiting Supernova 1987A Constraints on Dark Photons, JHEP, 01, 107 (2017) · Zbl 1373.85001
[96] Chang, JH; Essig, R.; McDermott, SD, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, JHEP, 09, 051 (2018)
[97] N. Bar, K. Blum and G. D’amico, Is there a supernova bound on axions?, arXiv:1907.05020 [INSPIRE].
[98] E. Braaten and D. Segel, Neutrino energy loss from the plasma process at all temperatures and densities, Phys. Rev.D 48 (1993) 1478 [hep-ph/9302213] [INSPIRE].
[99] Rrapaj, E.; Reddy, S., Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints, Phys. Rev., C 94 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.