×

Lagrangian formulation of electromagnetic fields in nondispersive medium by means of the extended Euler-Lagrange differential equation. (English) Zbl 1213.78012

Summary: This work is concerned with the Lagrangian formulation of electromagnetic fields. Here, the extended Euler-Lagrange differential equation for continuous, nondispersive media is employed. The Lagrangian density for electromagnetic fields is extended to derive all four Maxwell’s equations by means of electric and magnetic potentials. For the first time, ohmic losses for time and space variant fields are included. Therefore, a dissipation density function with time dependent and gradient dependent terms is developed. Both, the Lagrangian density and the dissipation density functions obey the extended Euler-Lagrange differential equation. Finally, two examples demonstrate the advantage of describing interacting physical systems by a single Lagrangian density.

MSC:

78A25 Electromagnetic theory (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J.-L. Lagrange, Mécanique Analytique, Vvc Desaint, Paris, 1788.; J.-L. Lagrange, Mécanique Analytique, Vvc Desaint, Paris, 1788.
[2] Goldstein, H., Classical Mechanics (1980), Addison-Wesley: Addison-Wesley Massachusetts · Zbl 0491.70001
[3] José, J. V.; Saletan, E. J., Classical Dynamics (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0918.70001
[4] Scheck, F., Mechanics (2003), Springer: Springer Berlin
[5] R. Süsse, B. Marx, Theoretische Elektrotechnik I. B.I. Wissenschaftsverlag, Mannheim, 1994.; R. Süsse, B. Marx, Theoretische Elektrotechnik I. B.I. Wissenschaftsverlag, Mannheim, 1994.
[6] Süsse, R.; Diemar, U.; Michel, G., Theoretische Elektrotechnik II (1996), VDI-Verlag: VDI-Verlag Düsseldorf
[7] R. Süsse, E. Kallenbach, T. Ströhla, Theoretische Elektrotechnik III. Wissenschaftsverlag Ilmenau, Ilmenau, 1997.; R. Süsse, E. Kallenbach, T. Ströhla, Theoretische Elektrotechnik III. Wissenschaftsverlag Ilmenau, Ilmenau, 1997.
[8] R. Süsse, U. Dietmar, Theoretische Elektrotechnik IV, Wissenschaftsverlag Ilmenau, Ilmenau, 2000.; R. Süsse, U. Dietmar, Theoretische Elektrotechnik IV, Wissenschaftsverlag Ilmenau, Ilmenau, 2000.
[9] R. Süsse, B. Marx, Theoretische Elektrotechnik V, Wissenschaftsverlag Ilmenau, Ilmenau, 2004.; R. Süsse, B. Marx, Theoretische Elektrotechnik V, Wissenschaftsverlag Ilmenau, Ilmenau, 2004.
[10] C. Civelek, Berechnung von elektrotechnischen Systemen mit Wandlern mittels erweitertem Lagrange- bzw. Hamilton-Formalismus. Wissenschaftsverlag Ilmenau, Ilmenau, 2001.; C. Civelek, Berechnung von elektrotechnischen Systemen mit Wandlern mittels erweitertem Lagrange- bzw. Hamilton-Formalismus. Wissenschaftsverlag Ilmenau, Ilmenau, 2001.
[11] Suesse, R.; Civelek, C., Analysis of engineering systems by means of Lagrange and Hamilton formalisms depending on contravariant, covariant tensorial variables, Engineering Research, 68, 66-74 (2003), July
[12] H. Sira-Ramirez, R. Ortega, G. Escobar, Lagrangian modeling of switch regulated DC-to-DC power converters, in: Proceedings of 35th IEEE Conference on Decision and Control, Kobe, Japan, December 1996, pp. 4492-4497.; H. Sira-Ramirez, R. Ortega, G. Escobar, Lagrangian modeling of switch regulated DC-to-DC power converters, in: Proceedings of 35th IEEE Conference on Decision and Control, Kobe, Japan, December 1996, pp. 4492-4497.
[13] Clemente-Gallardo, J.; Scherpen, J. M.A., Relating Lagrangian and Hamiltonian formalisms of LC circuits, IEEE Trans. Circuits Syst. I, 50, 10, 1359-1363 (2003) · Zbl 1368.94181
[14] F. Albertini, D. D’Alessandro, Lagrangian formulation and geometric control of switching LC electrical networks, in: Proceedings of 45th IEEE Conference on Decision and Control, San Diego, USA, December 2006, pp. 5204-5209.; F. Albertini, D. D’Alessandro, Lagrangian formulation and geometric control of switching LC electrical networks, in: Proceedings of 45th IEEE Conference on Decision and Control, San Diego, USA, December 2006, pp. 5204-5209.
[15] Chua, L. O.; McPherson, J. D., Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks, IEEE Trans. Circuits Syst., 21, 2, 277-286 (1974)
[16] Kwatny, H. G.; Massimo, F. M.; Bahar, L. Y., The generalized Lagrange formulation for nonlinear RLC networks, IEEE Trans. Circuits Syst., 29, 4, 220-233 (1982) · Zbl 0478.94023
[17] Kosyakov, B. P., Introduction to the Classical Theory of Particles and Fields (2007), Springer: Springer Berlin · Zbl 1114.81003
[18] Carroll, J. E., A lagrangian and hamiltonian formulation of electromagnetic theory with ohmic loss, Int. J. Electron., 54, 1, 139-145 (1983)
[19] Ter Haar, D., Elements of Hamiltonian Mechanics (1961), Pergamon Press: Pergamon Press Oxford · Zbl 0111.19302
[20] Simonyi, K., Theoretische Elektrotechnik (1979), VEB: VEB Berlin · Zbl 0158.46404
[21] Larmor, J., Ether and Matter (1900), Cambridge University Press: Cambridge University Press Cambridge · JFM 31.0759.01
[22] Jackson, J. D., Classical Electrodynamics (1975), John Wiley: John Wiley New York · Zbl 0114.42903
[23] Dirac, P. A.M., The theory of magnetic poles, Phys. Rev., 74, 7, 817-830 (1948) · Zbl 0034.27604
[24] Lehner, G., Elektromagnetische Feldtheorie (2006), Springer: Springer Berlin
[25] Someda, C. G., Electromagnetic Waves (2006), CRC Press: CRC Press Boca Raton FL
[26] Harmuth, H. F., Nonsinusoidal waves, modified Maxwell equations, dogma of the continuum, Electromagnetic Phenomena, 6, 1, 19-35 (2007)
[27] Saletan, E. J.; Cromer, A. H., Theoretical Mechanics (1971), Wiley: Wiley New York · Zbl 0249.70001
[28] Dieulesaint, E.; Royer, D., Elastic Waves in Solids (1980), Wiley: Wiley New York
[29] Kinsler, L. E.; Frey, A. R.; Coppens, A. B.; Sanders, J. V., Fundamentals of Acoustics (1982), Wiley: Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.