×

A large-scale nonlinear eigensolver for the analysis of dispersive nanostructures. (English) Zbl 1344.78005

Summary: We introduce the electromagnetic eigenmodal solver code FemaxxNano for the numerical analysis of nanometer structured optical systems, a scientific field generally know as nanooptics. FemaxxNano solves the electric field vector wave equation and calculates the electromagnetic eigenmodes of nearly arbitrary 3-dimensional resonators, embedded either in free-space, vacuum or a background medium. Here, the study of the interaction between nanometer sized metallic structures and light is at the heart of the physical problem. Since metals in the optical region of the electromagnetic spectrum are highly dispersive and, thus, dissipative, dielectric media, we eventually obtain a nonlinear eigenvalue problem. We discretize the electromagnetic eigenvalue problem with the finite element method (FEM) in 3-dimensional space and on unstructured tetrahedral grids. We introduce a fully iterative scheme to solve the nonlinear problem for complex coefficient matrices that depend on wavelength. We investigate the properties of the algorithm in detail and demonstrate its performance by analyzing a nanometer sized optical dimer structure, a specific type of optical antenna, on distributed-memory parallel computers.

MSC:

78A10 Physical optics
78M25 Numerical methods in optics (MSC2010)
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65Y05 Parallel numerical computation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Novotny, L.; Hecht, B., Principles of Nano-Optics (2006), Cambridge University Press
[2] Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors, Nat. Mater., 7, 6, 442-453 (2008)
[3] Mayer, K. M.; Hafner, J. H., Localized surface plasmon resonance sensors, Chem. Rev., 111, 6, 3828-3857 (2011)
[4] Höppener, C.; Novotny, L., Exploiting the lightmetal interaction for biomolecular sensing and imaging, Q. Rev. Biophys., 45, 2, 209-255 (2012)
[5] Atwater, H. A.; Polman, A., Plasmonics for improved photovoltaic devices, Nat. Mater., 9, 3, 205-213 (2010)
[6] Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L., Plasmonics for extreme light concentration and manipulation, Nat. Mater., 9, 3, 193-204 (2010)
[7] Bohren, C. F.; Huffmann, D. R., Absorption and Scattering of Light by Small Particles (1998), John Wiley: John Wiley New York, NY
[8] Smajic, J.; Hafner, C.; Raguin, L.; Tavzarashvili, K.; Mishrikey, M., Comparison of numerical methods for the analysis of plasmonic structures, J. Comput. Theor. Nanosci., 6, 763-774 (2009)
[9] Khoury, C. G.; Norton, S. J.; Vo-Dinh, T., Plasmonics of 3-d nanoshell dimers using multipole expansion and finite element method, ACS Nano, 3, 2776-2788 (2009)
[11] Dhawan, A.; Norton, S. J.; Gerhold, M. D.; Vo-Dinh, T., Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers, Opt. Express, 17, 9688-9703 (2009)
[12] Guo, H.; Oswald, B.; Arbenz, P., 3-dimensional eigenmodal analysis of plasmonic nanostructures, Opt. Express, 20, 5, 5481-5500 (2012)
[13] Volakis, J. L.; Chatterjee, A.; Kempel, L. C., Finite Element Method for Electromagnetics-Antennas, Microwave Circuits and Scattering Applications (1998), IEEE: IEEE New York, NY · Zbl 0966.78504
[14] Ramo, S.; Whinnery, J. R.; Duzer, T. V., Fields and Waves in Communication Electronics (1994), John Wiley: John Wiley New York, NY
[15] Jin, J., The Finite Element Method in Electromagnetics (2002), John Wiley: John Wiley New York, NY · Zbl 1001.78001
[16] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the Trilinos project, ACM Trans. Math. Software, 31, 3, 397-423 (2005) · Zbl 1136.65354
[18] Johnson, P. B.; Christy, R. W., Optical constants of the noble metals, Phys. Rev. B, 6, 12, 4370-4379 (1972)
[19] Girault, V.; Raviart, P.-A., (Finite Element Methods for the Navier-Stokes Equations. Finite Element Methods for the Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5 (1986), Springer: Springer Berlin) · Zbl 0585.65077
[20] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1024.78009
[22] Arbenz, P.; Geus, R., Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems, Appl. Numer. Math., 54, 2, 107-121 (2005) · Zbl 1127.65021
[23] Voss, H., Iterative projection methods for large-scale nonlinear eigenvalue problems, Comput. Tech. Rev., 1, 187-214 (2010)
[24] Sleijpen, G. L.G.; Booten, A. G.L.; Fokkema, D. R.; van der Vorst, H. A., Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT, 36, 595-633 (1996) · Zbl 0861.65035
[25] Sleijpen, G. L.G.; van der Vorst, H. A., Jacobi-Davidson method, (Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; van der Vorst, H., Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide (2000), SIAM: SIAM Philadelphia, PA), 238-246 · Zbl 0965.65058
[26] Betcke, T.; Voss, H., A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems, Future Gener. Comput. Syst., 20, 3, 363-372 (2004)
[28] Meerbergen, K.; Schröder, C.; Voss, H., A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations, Numer. Linear Algebra Appl. (2012)
[29] Hochstenbach, M. E.; Košir, T.; Plestenjak, B., A Jacobi-Davidson type method for the nonsingular two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 26, 2, 477-497 (2005) · Zbl 1077.65036
[30] van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[31] van der Vorst, H. A.; Melissen, J. B.M., A Petrov-Galerkin type method for solving \(A x = b\), where \(A\) is symmetric complex, IEEE Trans. Magn., 26, 2, 706-708 (1990)
[32] Arbenz, P.; Hochstenbach, M. E., A Jacobi-Davidson method for solving complex-symmetric eigenvalue problems, SIAM J. Sci. Comput., 25, 5, 1655-1673 (2004) · Zbl 1061.65027
[33] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[34] Tisseur, F.; Meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43, 2, 235-286 (2001) · Zbl 0985.65028
[35] Fokkema, D. R.; Sleijpen, G. L.G.; van der Vorst, H. A., Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils, SIAM J. Sci. Comput., 20, 1, 94-125 (1998) · Zbl 0924.65027
[36] Arbenz, P.; Bečka, M.; Geus, R.; Hetmaniuk, U.; Mengotti, T., On a parallel multilevel preconditioned Maxwell eigensolver, Parallel Comput., 32, 2, 157-165 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.