×

On progressive blast envelope evolution of charged particles in electromagnetic fields. (English) Zbl 1439.78002

Summary: In this paper, we investigate the explosion of a set of charged particles in an electromagnetic field and the progressive time-evolution of the blast envelope. It is shown that the initial spherical blast envelope evolves into the shape of an ellipsoid whose longitudinal axis is aligned with the magnetic field. Specifically, the individual particles rotate around the longitudinal axis, and rotate in decaying orbits until they become stationary, leaving a stationary overall ellipsoidal configuration of particles. In order to investigate this system, a direct multiparticle model is constructed, which balances the detonation energy released from the initial blast pulse with the subsequent particle-system kinetic energy and then computes the trajectories of the discrete interacting material under the influence of the electromagnetic field and drag from any surrounding medium. Under certain simplifying assumptions, the model can be solved for analytically, which provides a guide to identifying the key parameters that control the evolving blast envelope. Three dimensional examples are provided to illustrate the framework/method.

MSC:

78A25 Electromagnetic theory (general)

Keywords:

charged; particles; blast
PDFBibTeX XMLCite
Full Text: DOI

References:

[4] Baker, D. N., Severe Space Weather Events-Understanding Societal and Economic Impacts: A Workshop Report, 77 (2008), National Academies Press
[5] Morring, F., Major Solar Event Could Devastate Power Grid, 49-50 (2013), Aviation Week & Space Technology
[7] Carroll, B. W.; Ostlie, D. A., An Introduction to Modern Astrophysics, 390 (2007), Addison-Wesley: Addison-Wesley San Francisco
[8] Andrews, M. D., A search for CMEs associated with big flares, Sol. Phys., 218, 1, 261-279 (2003)
[9] Vourlidas, A.; Wu, S. T.; Wang, A. H.; Subramanian, P.; Howard, R. A., Direct detection of a coronal mass ejection-associated shock in large angle and spectrometric coronagraph experiment white-light images, Astrophysical Journal, 598, 2, 1392-1402 (2003)
[10] Manchester, W. B.; Gombosi, T. I.; De Zeeuw, D. L.; Sokolov, I. V.; Roussev, I. I.; Powell, K. G.; Kota, J.; Toth, G.; Zurbuchen, T. H., Coronal mass ejection shock and sheath structures relevant to particle acceleration, Astrophys. J., 622, 2, 1225-1239 (2005), 622 2: 1225-1239
[11] Jackson, J. D., Classical Electrodynamics (1998), Wiley · Zbl 0114.42903
[12] Zohdi, T. I., A computational framework for agglomeration in thermo-chemically reacting granular flows, Proc. R. Soc., 460, 2052, 3421-3445 (2004) · Zbl 1070.76057
[13] Zohdi, T. I., Computation of strongly coupled multifield interaction in particle-fluid systems, Comput. Methods Appl. Mech. Engrg., 196, 3927-3950 (2007) · Zbl 1173.76418
[14] Zohdi, T. I., On the dynamics of charged electromagnetic particulate jets, Arch. Comput. Methods Eng., 17, 2, 109-135 (2010) · Zbl 1269.76133
[15] Zohdi, T. I., Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces, J. Comput. Phys., 233, 509-526 (2013)
[16] Zohdi, T. I., Additive particle deposition and selective laser processing-a computational manufacturing framework, Comput. Mech., 54, 171-191 (2014)
[17] Zohdi, T. I., Mechanically-driven accumulation of microscale material at coupled solid-fluid interfaces in biological channels, Proc. R. Soc. Interface, 11, 20130922 (2014)
[18] Zohdi, T. I., A note on firework blasts and qualitative parameter dependency, Proc. R. Soc. (2016)
[19] Avci, B.; Wriggers, P., A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows, J. Appl. Mech., 79 (2012), 010901-(1-7)
[20] Chow, C. Y., An Introduction to Computational Fluid Dynamics (1980), Wiley: Wiley New York
[21] Schlick, T., Molecular Modeling & Simulation. An Interdisciplinary Guide (2000), Springer-Verlag: Springer-Verlag New York · Zbl 1011.92019
[22] Frenklach, M.; Carmer, C. S., Molecular dynamics using combined quantum & empirical forces: application to surface reactions, (Advances in Classical Trajectory Methods, vol. 4 (1999)), 27-63
[23] Haile, J. M., Molecular Dynamics Simulations: Elementary Methods (1992), Wiley
[24] Hase, W. L., Molecular dynamics of clusters, surfaces, liquids, & interfaces, (Advances in Classical Trajectory Methods, vol. 4 (1999), JAI Press)
[25] Rapaport, D. C., The Art of Molecular Dynamics Simulation (1995), Cambridge University Press · Zbl 1098.81009
[26] Moelwyn-Hughes, E. A., Physical Chemistry (1961), Pergamon
[27] Stillinger, F. H.; Weber, T. A., Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 31, 5262-5271 (1985)
[28] Tersoff, J., Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett., 61, 2879-2882 (1988)
[29] Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew, The Feynman Lectures on Physics, vol. 2 (2006) · Zbl 1322.74001
[30] Cullity, C. D. Graham, Introduction to Magnetic Materials, 103 (2008), Wiley-IEEE Press
[31] Boyer, Timothy H., The force on a magnetic dipole, Amer. J. Phys., 56, 8, Article 688692 pp. (1988), Bibcode:1988AmJPh..56..688B
[32] Widom, B., Random sequential addition of hard spheres to a volume, J. Chem. Phys., 44, 3888-3894 (1966)
[33] Torquato, S., Random Heterogeneous Materials: Microstructure & Macroscopic Properties (2002), Springer-Verlag: Springer-Verlag New York · Zbl 0988.74001
[34] Kansaal, A.; Torquato, S.; Stillinger, F., Diversity of order and densities in jammed hard-particle packings, Phys. Rev. E, 66, Article 041109 pp. (2002)
[35] Donev, A.; Cisse, I.; Sachs, D.; Variano, E. A.; Stillinger, F.; Connelly, R.; Torquato, S.; Chaikin, P., Improving the density of jammed disordered packings using ellipsoids, Science, 303, 990-993 (2004)
[36] Donev, A.; Stillinger, F. H.; Chaikin, P. M.; Torquato, S., Unusually dense crystal ellipsoid packings, Phys. Rev. Lett., 92, Article 255506 pp. (2004)
[37] Donev, A.; Torquato, S.; Stillinger, F., Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I. Algorithmic details, J. Comput. Phys., 202, 737 (2005) · Zbl 1067.82061
[38] Donev, A.; Torquato, S.; Stillinger, F., Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-II. Application to ellipses and ellipsoids, J. Comput. Phys., 202, 765 (2005) · Zbl 1067.82062
[39] Donev, A.; Torquato, S.; Stillinger, F. H., Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings, Phys. Rev. E, 71, Article 011105 pp. (2005)
[40] Onate, E.; Idelsohn, S. R.; Celigueta, M. A.; Rossi, R., Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows, Comput. Methods Appl. Mech. Engrg., 197, 19-20, 1777-1800 (2008) · Zbl 1194.74460
[41] Onate, E.; Celigueta, M. A.; Idelsohn, S. R.; Salazar, F.; Suárez, B., Possibilities of the particle finite element method for fluid-soil-structure interaction problems, Comput. Mech., 48, 307-318 (2011) · Zbl 1398.76120
[42] Leonardi, A.; Wittel, F. K.; Mendoza, M.; Herrmann, H. J., Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions, Comput. Part. Mech., 1, 1, 3-13 (2014)
[43] Onate, E.; Celigueta, M. A.; Latorre, S.; Casas, G.; Rossi, R.; Rojek, J., Lagrangian analysis of multiscale particulate flows with the particle finite element method, Comput. Part. Mech., 1, 1, 85-102 (2014)
[44] Bolintineanu, D. S.; Grest, G. S.; Lechman, J. B.; Pierce, F.; Plimpton, S. J.; Schunk, P. R., Particle dynamics modeling methods for colloid suspensions, Comput. Part. Mech., 1, 3, 321-356 (2014)
[45] Zohdi, T. I., Genetic design of solids possessing a random-particulate microstructure, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 361, 1806, 1021-1043 (2003) · Zbl 1134.74353
[46] Zohdi, T. I., On the compaction of cohesive hyperelastic granules at finite strains, Proc. R. Soc., 454, 2034, 1395-1401 (2003) · Zbl 1066.74529
[47] Albrecht, T.; Bhrer, C.; Fhnle, M.; Maier, K.; Platzek, D.; Reske, J., First observation of ferromagnetism and ferromagnetic domains in a liquid metal, Appl. Phys. A, 65, 2, 215 (1997)
[48] Andelman, D.; Rosensweig, R. E., The phenomenology of modulated phases: From magnetic solids and fluids to organic films and polymers, (Tsori, Yoav, Steiner, Ullrich, Polymers, Liquids and Colloids in Electric Fields: Interfacial Instabilities, Orientation and Phase Transitions (2009), World Scientific), 1-56
[49] Berger, P.; Adelman, N. B.; Beckman, K. J.; Campbell, D. J.; Ellis, A. B.; Lisensky, G. C., Preparation and properties of an aqueous ferrofluid, J. Chem. Educ., 76, 7, 943-948 (1999)
[50] Wellmann, C.; Lillie, C.; Wriggers, P., A contact detection algorithm for superellipsoids based on the common-normal concept, Eng. Comput., 25, 432-442 (2008) · Zbl 1257.70021
[51] Wellmann, C.; Lillie, C.; Wriggers, P., Homogenization of granular material modelled by a three-dimensional discrete element method, Comput. Geotech., 35, 394-405 (2008)
[52] Wellmann, C.; Lillie, C.; Wriggers, P., Comparison of the macroscopic behavior of granular materials modeled by different constitutive equations on the microscale, Finite Elem. Anal. Des., 44, 259-271 (2008)
[53] Wellmann, C.; Wriggers, P., (Onate, E.; Owen, D. R.J., Homogenization of Granular Material modeled by a 3D DEM, Particle-Based Methods: Fundamentals and Applications (2011)), 211-231
[54] Wellmann, C.; Wriggers, P., A two-scale model of granular materials, Comput. Methods Appl. Mech. Engrg., 205-208, 46-58 (2012) · Zbl 1239.74083
[55] Johnson, K., Contact Mechanics (1985), Cambridge University Press · Zbl 0599.73108
[56] Wriggers, P., Computational Contact Mechanics (2002), John-Wiley
[57] Wriggers, P., Nonlinear Finite Element Analysis (2008), Springer · Zbl 1153.74001
[58] Zohdi, T. I.; Wriggers, P., Introduction to Computational Micromechanics, Second Reprinting (2008), Springer-Verlag · Zbl 1143.74002
[59] Zohdi, T. I., An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids, Internat. J. Numer. Methods Engrg., 53, 1511-1532 (2002) · Zbl 1114.74496
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.