×

Statistical properties for a dissipative model of relativistic particles in a wave packet: a parameter space investigation. (English) Zbl 1334.78012

Summary: Some statistical and dynamical properties for the problem of relativistic charged particles in a wave packet are studied. We show that the introduction of dissipation change the structure of the phase space and attractors appear. Additionally, by changing at least one of the control parameters, the unstable manifold touches the stable manifold of the same saddle fixed point and a boundary crisis occurs. We show that the chaotic attractor is destroyed given place to a transient which follows a power law with exponent \(- 1\) when varying the control parameters near the criticalities. On the other hand, by changing at least two control parameters and by using the Lyapunov exponents to classify orbits with chaotic and periodic behaviour, we show the existence of infinite shrimp-shaped domains, which correspond to the periodic attractors, embedded in a region with chaotic behaviour. Finally, we show the first indication of a shrimp in a three dimension parameter space.

MSC:

78A20 Space charge waves
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Chirikov, B. V., A universal instability of many-dimensional oscillator systems, Phys. Rep., 52, 263 (1979)
[3] Liu, W. V.; Schieve, W. C., Quantum chaotic attractor in a dissipative system, Phys. Rev. Lett., 78, 3278 (1997)
[4] Senitzky, I. R., Fundamental theorem in quantum optics, Phys. Rev. Lett., 15, 233 (1965)
[5] Breuer, H.-P.; Petruccione, F., Dissipative quantum systems in strong laser fields: stochastic wave-function method and Floquet theory, Phys. Rev. A, 55, 3101 (1997)
[6] Katz, G.; Ratner, M. A.; Kosloff, R., Decoherence control by tracking a Hamiltonian reference molecule, Phys. Rev. Lett., 98, 203006 (2007)
[7] Parmananda, P.; Hildebrand, M.; Eiswirth, M., Controling turbulence in coupled map lattice systems using feedback techniques, Phys. Rev. E, 56, 239 (1997)
[8] L’vov, V.; Pomyalov, A.; Procaccia, I.; Tiberkevich, V., Drag reduction by polymers in wall bounded turbulence, Phys. Rev. Lett., 92, 244503 (2004)
[9] Zhao, Y.; Ma, C.; Chen, G.; Jiang, Q., Energy dissipation in carbon nanotube oscillators, Phys. Rev. Lett., 91, 175504 (2003)
[10] Shneider, M. N.; Barker, P. F., Optical Landau damping, Phys. Rev. A, 71, 053403 (2005)
[11] Tannor, D. J.; Bartana, A., On the interplay of control fields and spontaneous emission in laser cooling, J. Phys. Chem. A, 103, 10359 (1999)
[12] Lenz, F.; Diakonos, F. K.; Schmelcher, P., Tunable Fermi acceleration in a driven elliptical billiards, Phys. Rev. Lett., 100, 014103 (2008)
[13] Leonel, E. D.; Bunimovich, L. A., Suppressing Fermi acceleration in a driven elliptical billiard, Phys. Rev. Lett., 104, 224101 (2010)
[14] Bunimovich, L. A., On the ergodic properties of nowhere dispersing billiards, Commun. Math. Phys., 65, 295 (1979) · Zbl 0421.58017
[15] Lopac, V.; Mrkonjić, I.; Radić, D., Chaotic dynamics and orbit stability in the parabolic oval billiard, Phys. Rev. E, 66, 036202 (2002)
[16] Lopac, V.; Mrkonjić, I.; Pavin, N.; Radić, D., Chaotic dynamics of the elliptical stadium billiard in the full parameter space, Physica D, 217, 88 (2006) · Zbl 1100.37020
[17] Berry, M. V., Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard, Eur. J. Phys., 2, 91 (1981)
[18] Robnik, M., Classical dynamics of a family of billiards with analytic boundaries, J. Phys. A: Math. Gen., 16, 3971 (1983) · Zbl 0622.70011
[19] Prosen, T.; Robnik, M., Energy level statistics in the transition region between integrability and chaos, J. Phys. A: Math. Gen., 26, 2371 (1983) · Zbl 0781.58027
[20] Leonel, E. D.; McClintock, P. V.E., A hybrid Fermi-Ulam-bouncer model, J. Phys. A, 38, 823 (2005) · Zbl 1076.37536
[21] Zaslavsky, G. M.; Sagdeev, R. Z.; Usikov, D. A.; Chernikov, A. A., Weak Chaos and Quasi-Regular Patterns, Cambridge Nonlinear Science Series (1991), Cambridge University Press · Zbl 0745.58004
[22] Chernikov, A. A.; Tél, T.; Vattay, G.; Zaslavsky, G. M., Chaos in the relativistic generalization of the standard map, Phys. Rev. A, 40, 4072 (1989)
[23] Nomura, Y.; Ychikawa, Y. H.; Horton, W., Phys. Rev. A, 45, 1103 (1992)
[24] Oliveira, D. F.M.; Leonel, E. D.; Robnik, M., Boundary crisis and transient in a dissipative relativistic standard map, Phys. Lett. A, 375, 3365 (2011) · Zbl 1252.37071
[25] Grebogi, C.; Ott, E.; Yorke, J. A., Chaotic attractors in crisis, Phys. Rev. Lett., 48, 1507 (1982)
[26] Grebogi, C.; Ott, E.; Yorke, J. A., Crises, sudden changes in chaotic attractors, and transient chaos, Physica D, 7, 181 (1983) · Zbl 0561.58029
[27] Gallas, J. A.C., Structure of the parameter space of the Hénon map, Phys. Rev. Lett., 70, 2714 (1983)
[28] de Souza, S. L.T.; Lima, A. A.; Caldas, I. L.; Medrano-T, R. O.; Guimarães-Filho, Z. O., Self-similarities of periodic structures for a discrete model of a two-gene system, Phys. Lett. A, 376, 1290 (2012) · Zbl 1260.37060
[29] Medeiros, E. S.; de Souza, S. L.T.; Medrano-T, R. O.; Caldas, I. L., Replicate periodic windows in the parameter space of driven oscillators, Chaos Solitons Fractals, 44, 982 (2011)
[30] Popovych, O. V.; Krachkovskyi, V.; Tass, P. A., Phase-locking swallows in coupled oscillators with delayed feedback, Phys. Rev. E, 82, 046203 (2010)
[31] Barrio, R.; Blesa, F.; Serrano, S.; Shilnikov, A., Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci, Phys. Rev. E, 84, 035201(R) (2011)
[32] Eckmann, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617 (1985) · Zbl 0989.37516
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.