×

Poincaré maps modeling and local orbital stability analysis of discontinuous piecewise affine periodically driven systems. (English) Zbl 1193.70029

Summary: This paper presents a methodology to study the local stability of periodic orbits (orbital stability) in switched discontinuous piecewise affine (DPWA) periodically driven multiple-input multiple-output (MIMO) systems. The switched system of interest has a bilinear state space representation where the controller inputs are binary signals taking values in the set \(\{0,1\}\). These systems are characterized by a set of affine differential equations together with switching rules to commute between them. These switching rules are described by switching functions that are periodic in time and linear in state. The methodology is based on obtaining a discrete time model (Poincaré map), its steady state operation points, and its Jacobian matrix. This provides a powerful tool for studying their stability and to predict some kind of instability phenomena that the system can undergo like subharmonic oscillations. The proposed approach is applied to a power electronic circuit which toggles among six different system equations with five switching boundaries within a switching cycle.

MSC:

70K20 Stability for nonlinear problems in mechanics
70K42 Equilibria and periodic trajectories for nonlinear problems in mechanics
78A55 Technical applications of optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armanazy, A.N.: Steady-state analysis of piecewise-linear systems with periodic inputs. Proc. IEEE 61, 789–790 (1973)
[2] Pettit, N.B.O.L., Wellstead, P.E.: Analyzing piecewise linear dynamical systems. IEEE Control Syst. Mag. 15(5), 43–50 (1995)
[3] Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Autom. Control 43(4),555–559 (1998) · Zbl 0905.93039
[4] Imura, J.I., van der Schaft, A.: Characterization of well-posedness of piecewise-linear systems. IEEE Trans. Autom. Control 45(9), 1600–1619 (2000) · Zbl 0978.34012
[5] Doi, S., Kumagai, S.: Complicated slow oscillations with simple switching dynamics in a piecewise linear neuronal model. In: Proceedings of The 4th IEEE International Midwest Symposium on Circuits and Systems II, Hiroshima, Japan, pp. 609–612 (2004)
[6] Chua, L., Deng, A.: Canonical piecewise-linear modeling. IEEE Trans. Circuits Syst. 33(5), 511–525 (1986)
[7] Liberzon, D.: Switching in Systems and Control. Oxford University Press, Oxford (1999) · Zbl 1036.93001
[8] Freire, E., Ponce, E., Rodrigo, F.: Torres, F., Bifurcation sets of continuous piecewise linear systems with two zones. Int. J. Bif. Chaos 8(11), 2073–2097 (1998) · Zbl 0996.37065
[9] Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer-Verlag, Berlin (2004) · Zbl 1068.70003
[10] di Bernardo, M., Vasca, F.: On discrete time maps for the analysis of bifurcations and chaos in DC/DC converters. IEEE Trans. Circuits Syst. I 47(2), 130–143 (2000) · doi:10.1109/81.828567
[11] Ma, Y., Kawakami, H., Tse, C.K.: Analysis of bifurcation in switched dynamical systems with periodically moving border: Application to power converters. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’04), Vancouver, Canada, pp. 701–704 (2004)
[12] Olivar, G., Fossas, E., Batlle, C.: Bifurcations and chaos in converters. Discontinuous vector fields and singular Poincaré maps. Nonlinearity 13, 1095–1121 (2000) · Zbl 0970.37025 · doi:10.1088/0951-7715/13/4/307
[13] Banerjee, S., Ranjan, P., Grebogi, C.: Bifurcations in two-dimensional piecewise smooth maps: theory and applications in switching circuits. IEEE Trans. Circuits Syst. I 47(5), 633–643 (2000) · Zbl 1050.37511 · doi:10.1109/81.847870
[14] Mazumder, S.K., Nayfeh, A.H., Boroyevich, D.: Theoretical and experimental investigation of the fast-and slow-scale instabilities of a DC–DC converter. IEEE Trans. Power Electron. 16(2), 201–216 (2001) · doi:10.1109/63.911144
[15] Fang, C.-C., Abed, E.H.: Robust feedback stabilization of limit cycles in PWM DC–DC converters. Nonlinear Dyn. 27(3), 295–309 (2002) · Zbl 1065.93545 · doi:10.1023/A:1014402431119
[16] El Aroudi, A., Debbat, M., Olivar, G., Benadero, L., Toribio, E., Giral, R.: Bifurcations in DC–DC switching converters: review of methods and applications. Int. J. Bif. Chaos 15(5), 1549–1578 (2005) · Zbl 1092.37521
[17] El Aroudi, A., Robert, B.: Modeling and dynamics of a high voltage DC–DC converter: a nonlinear approach. In: Proceedings of the International Symposium on Nonlinear Theory and its Applications, NOLTA04, Fukuoka, Japan, pp. 311–316 (2004)
[18] El Aroudi, A., Debbat, M., Giral, R., MartÍnez-Salamero, L.: Stability analysis of piecewise linear Differential equations. In: Congreso de Ecuaciones diferenciales y Aplicaciones, CEDYA, Tarragona, Spain, CD-ROM (2003)
[19] Roll, J.: Local and Piecewise Affine Approaches to System Identification. Ph.D. Thesis, Linköping Universitet, Linkopping, Sweden (2003)
[20] Utkin, V.I., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, London (1999)
[21] Hang, J.Y., Gao, W., Hung, J.C.: Variable structure control: A survey. IEEE Trans. Ind. Electron. 40(1), 2 (1993) · doi:10.1109/41.184817
[22] Efe, M.Ö., Ünsal, C., Kaynak, O., Yu, X.: Variable structure control of a class of uncertain systems. Automatica 40, 59–64 (2004) · Zbl 1043.93011 · doi:10.1016/j.automatica.2003.07.010
[23] Meynard, T.A., Fadel, M., Aouda, N.: Modeling of mutlilevel converters. IEEE Trans. Ind. Electron. 44(3), 356–364 (1997) · doi:10.1109/41.585833
[24] di Bernardo, M., Budd, C.J., Champneys, A.R.: Corner collision implies border-collision bifurcation. Physica D 154, 171–194 (2001) · Zbl 0984.34028 · doi:10.1016/S0167-2789(01)00250-0
[25] Hamill, D.C., Deane, J.H.B., Jefferies, D.J.: Modeling of chaotic DC–DC converters by iterated nonlinear mappings. IEEE Trans. Power Electron. 7(1), 25–36 (1992) · doi:10.1109/63.124574
[26] Zhusubaliyev, Z.T., Moskilde, E.: Torus Birth Bifurcations in a DC/DC Converter. IEEE Trans. Circuits Syst. I 53(8), 1839–1850 (2006) · Zbl 1374.94936
[27] Zhusubaliyev, Z.T., et al.: Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation. Chaos 16, 023122 (2006) · Zbl 1146.37343 · doi:10.1063/1.2208565
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.