×

Integrability, normal forms, and magnetic axis coordinates. (English) Zbl 1487.78002

Summary: Integrable or near-integrable magnetic fields are prominent in the design of plasma confinement devices. Such a field is characterized by the existence of a singular foliation entirely consisting of invariant submanifolds. A compact regular leaf (a flux surface) of this foliation must be diffeomorphic to the two-torus. In a neighborhood of a flux surface, it is known that the magnetic field admits several exact smooth normal forms in which the field lines are straight. However, these normal forms break down near singular leaves, including elliptic and hyperbolic magnetic axes. In this paper, the existence of exact smooth normal forms for integrable magnetic fields near elliptic and hyperbolic magnetic axes is established. In the elliptic case, smooth near-axis Hamada and Boozer coordinates are defined and constructed. Ultimately, these results establish previously conjectured smoothness properties for smooth solutions of the magnetohydrodynamic equilibrium equations. The key arguments are a consequence of a geometric reframing of integrability and magnetic fields: they are presymplectic systems.
©2021 American Institute of Physics

MSC:

78A25 Electromagnetic theory (general)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
82D10 Statistical mechanics of plasmas
76W05 Magnetohydrodynamics and electrohydrodynamics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abraham, R.; Marsden, J., Foundations of Mechanics (1978), Addison-Wesley: Addison-Wesley, Redwood City · Zbl 0393.70001
[2] Arnold, V. I., Mathematical Methods of Classical Mechanics (1978), Springer-Verlag: Springer-Verlag, New York · Zbl 0386.70001
[3] Boozer, A. H., Plasma equilibrium with rational magnetic surfaces, Phys. Fluids, 24, 1999-2003 (1981) · Zbl 0471.76130 · doi:10.1063/1.863297
[4] Burby, J. W.; Kallinikos, N.; MacKay, R. S., Generalized Grad-Shafranov equation for non-axisymmetric MHD equilibria, Phys. Plasmas, 27, 10, 102504 (2020) · doi:10.1063/5.0015420
[5] Burby, J. W.; Kallinikos, N.; MacKay, R. S., Some mathematics for quasi-symmetry, J. Math. Phys., 61, 093503 (2020) · Zbl 1454.78008 · doi:10.1063/1.5142487
[6] Cerfon, A. J.; Freidberg, J. P., One size fits all’ analytic solutions to the Grad-Shafranov equation, Phys. Plasmas, 17, 032502 (2010) · doi:10.1063/1.3328818
[7] da Silva, A. C., Lectures on Symplectic Geometry (2008), Springer
[8] de Leon, M.; Saralegi, M., Cosymplectic reduction for singular momentum maps, J. Phys. A: Math. Gen., 26, 19, 5033-5043 (1993) · Zbl 0806.53033 · doi:10.1088/0305-4470/26/19/032
[9] de Vediere, Y. C.; Ngoc, S. V., Singular Bohr-Sommerfeld rules for 2D integrable systems, Ann. Sci. Ec. Norm. Super., 36, 1, 1-55 (2003) · Zbl 1028.81026 · doi:10.1016/S0012-9593(03)00002-8
[10] Echeverria-Enriquez, A.; Munoz-Lecanda, M. C.; Roman-Roy, N., Reduction of presymplectic manifolds with symmetry, Rev. Math. Phys., 11, 10, 1209-1247 (1999) · Zbl 0983.53056 · doi:10.1142/S0129055X99000386
[11] Eliasson, L. H., Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case, Comment. Math. Helvetici, 65, 4-35 (1990) · Zbl 0702.58024 · doi:10.1007/bf02566590
[12] Garren, D. A.; Boozer, A. H., Existence of quasihelically symmetric stellarators, Phys. Plasmas, 3, 2822 (1991) · doi:10.1063/1.859916
[13] Garren, D. A.; Boozer, A. H., Magnetic field strength of toroidal plasma equilibria, Phys. Plasmas, 3, 2805 (1991) · doi:10.1063/1.859915
[14] Gotay, M. J., On coisotropic imbeddings of presymplectic manifolds, Proc. Am. Math. Soc., 84, 111 (1982) · Zbl 0476.53020 · doi:10.1090/s0002-9939-1982-0633290-x
[15] Gotay, M. J.; Nester, J. M.; Beigelbock, W.; Bohm, A.; Takasugi, E., Presymplectic Hamilton and Lagrange systems, gauge transformations and the Dirac theory of constraints, Group Theoretical Methods in Physics, 272-279 (1979), Springer
[16] Hamada, S., Hydromagnetic equilibria and their proper coordinates, Nucl. Fusion, 2, 1-2, 23-37 (1962) · doi:10.1088/0029-5515/2/1-2/005
[17] Hazeltine, R. D.; Meiss, J. D., Plasma Confinement (2003), Dover Publications: Dover Publications, Mineola, NY
[18] Helander, P., Theory of plasma confinement in non-axisymmetric magnetic fields, Rep. Prog. Phys., 77, 8, 087001 (2014) · doi:10.1088/0034-4885/77/8/087001
[19] Landerman, M.; Sengupta, W., Direct construction of optimized stellarator shapes. Part 1. Theory in cylindrical coordinates, J. Plasma Phys., 84, 905840616 (2018) · doi:10.1017/S0022377818001289
[20] Landerman, M.; Sengupta, W., Constructing stellarators with quasisymmetry to higher order, J. Plasma Phys., 85, 815850601 (2019) · doi:10.1017/S0022377819000783
[21] Landerman, M.; Sengupta, W.; Plunk, G. G., Direct construction of optimized stellarator shapes. Part 2. Numerical quasisymmetric solutions, J. Plasma Phys., 85, 905850103 (2019) · doi:10.1017/S0022377818001344
[22] Littlejohn, R. G., A guiding center Hamiltonian: A new approach, J. Math. Phys., 20, 2445 (1979) · Zbl 0444.70020 · doi:10.1063/1.524053
[23] MacKay, R. S., Differential forms for plasma physics, J. Plasma Phys., 86, 1, 925860101 (2020) · doi:10.1017/s0022377819000928
[24] Meiss, J. D., Differential Dynamical Systems (2017), SIAM: SIAM, Philadelphia · Zbl 1365.34001
[25] Mineur, H., Sur les systèmes mécaniques admettant n intégrales premières uniformes et l’extension à ces systèmes de la méthode de quantification de Sommerfeld, C. R. Acad. Sci., Paris, 200, 1571-1573 (1935) · JFM 61.0936.03
[26] Morin, L., A semiclassical Birkhoff normal form for constant-rank magnetic fields (2021)
[27] Ortega, J.-P.; Ratiu, T. S., Momentum Maps and Hamiltonian Reduction (2004), Birkhauser: Birkhauser, Boston, MA · Zbl 1241.53069
[28] Plunk, G. G.; Landreman, M.; Helander, P., Direct construction of optimized stellarator shapes. Part 3. Omnigeneity near the magnetic axis, J. Plasma Phys., 85, 905850602 (2019) · doi:10.1017/s002237781900062x
[29] Sepe, D.; Vũ Ngọc, S., Integrable systems, symmetries, and quantization, Lett. Math. Phys., 108, 3, 499-571 (2018) · Zbl 1390.37101 · doi:10.1007/s11005-017-1018-z
[30] Souriau, J.-M., Structure of Dynamical Systems: A Symplectic View of Physics (1997), Springer Science & Business Media
[31] Zung, N. T., A conceptual approach to the problem of action-angle variables, Arch. Ration. Mech. Anal., 229, 789-833 (2018) · Zbl 1398.37053 · doi:10.1007/s00205-018-1227-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.