×

Bayes approach to solving T.E.A.M. benchmark problems 22 and 25 and its comparison with other optimization techniques. (English) Zbl 1426.74248

Summary: The Bayes approach is used for solution of benchmark problems 22 and 25. The main purpose of the paper is to evaluate its applicability for solving complex technical problems (up to now, this technique was only very rarely used in the domain of such tasks). The parameters of this approach are compared with characteristics of several other heuristic and deterministic optimization techniques implemented in commercial code COMSOL Multiphysics and own open-source application Agros Suite. The results confirm that the Bayes approach is superior in a number of aspects and for the solution of real-life tasks it represents a powerful and prospective alternative to existing optimization methods

MSC:

74P05 Compliance or weight optimization in solid mechanics
78A25 Electromagnetic theory (general)
90C59 Approximation methods and heuristics in mathematical programming
65K05 Numerical mathematical programming methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mohan, C.h.; Deep, K., Optimization Techniques (2015), New Age Science
[2] Rao, S. S., Engineering optimization: Theory and Practice (2009), John Wiley & Sons, Inc.
[3] Smetana, M.; Janousek, L., Evaluation of inductance coil and fluxgate magnetometer under harmonic and pulsed excitations in ECT, Int. J. Appl. Electromagn. Mech., 39, 1-4, 277-282 (2012)
[4] Mockus, J., Bayesian approach to global optimization: theory and applications, Mathematics and its Applications. Mathematics and its Applications, Series (1989), Springer: Springer Netherlands · Zbl 0693.49001
[5] Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; de, Freitas. N., Taking the human out of the loop: a review of Bayesian optimization, Proc. IEEE, 104, 1, 148-175 (2016)
[6] Lai, W.; Liu, X.; Chen, W.; Lei, X.; Tang, X.; Zang, Z., Transient multiexponential signals analysis using Bayesian deconvolution, Appl. Math. Comput., 265, 486-493 (2015) · Zbl 1410.62165
[7] Alotto, P.; Baumgartner, U.; Freschi, F.; Jaindl, M.; Köstinger, A.; Magele, Ch.; Renhart, W.; Repetto, M., SMES Optimization Benchmark Extended: Introducing Pareto Optimal Solutions Into TEAM22, IEEE Trans. Magn, 44, 6, 1066-1069 (2008)
[8] Coco, S., TEAM problem 22 approached by a hybrid artificial life method, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 31, 3, 816-826 (2012)
[9] Soares, G.; Adriano, R.; Maia, C.; Jaulin, L.; Vasconcelos, J., Robust multi-objective TEAM 22 problem: a case study of uncertainties in design optimization, IEEE Trans. Magn., 45, 3, 1028-1031 (2009)
[10] Chiandussi, G.; Codegone, M.; Ferrero, S.; Varesio, F. E., Comparison of multi-objective optimization methodologies for engineering applications, Comput. Math. Appl., 63, 5, 912-942 (2012) · Zbl 1247.74052
[11] Guimarães, F. G.; Campelo, F.; Saldanha, R. R.; Igarashi, H.; Takahashi, R. H.C.; Ramĩrez, J. A., A multiobjective proposal for the TEAM benchmark problem 22., IEEE Trans. Magn., 42, 4, 1471-1474 (2006)
[12] Vieira, D. A.G.; Adriano, R. L.S.; Vasconcelos, J. A.; Krähenbühl, L., Treating constraints as objectives in multiobjective optimization problems using niched pareto genetic algorithm, IEEE Trans. Magn., 40, 2, 1188-1191 (2004)
[13] N. Takahashi, Optimization of die press model: TEAM workshop problem 25 [online]. available:. http://www.compumag.org/jsite/images/stories/TEAM/problem25.pdf; N. Takahashi, Optimization of die press model: TEAM workshop problem 25 [online]. available:. http://www.compumag.org/jsite/images/stories/TEAM/problem25.pdf
[14] Kobetski, A.; Coulomb, J.-L.; Costa, M. C.; Marẽchal, Y.; Jönsson, U., Comparison of radial basis function approximation techniques, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 22, 3, 616-629 (2003) · Zbl 1161.78339
[15] M. Costa, J.-L. Coulomb, Y. Marẽchal, Parameters screening of TEAM workshop problem 25 by the application of experimental design method, In: Proceedings of International symposium on theoretical electrical engineering, Aug 2001, Linz, Austria. ISTET 2001 Conference records, 2001.; M. Costa, J.-L. Coulomb, Y. Marẽchal, Parameters screening of TEAM workshop problem 25 by the application of experimental design method, In: Proceedings of International symposium on theoretical electrical engineering, Aug 2001, Linz, Austria. ISTET 2001 Conference records, 2001.
[16] Bettini, P.; Specogna, R.; Trevisan, F., A discrete geometric approach to solving 2-D non-linear magnetostatic problems, IEEE Trans. Magn., 46, 8, 1045-1402 (2010)
[17] Lebensztajn, L.; Coulomb, J., TEAM workshop problem 25: a multiobjective analysis, IEEE Trans. Magn., 40, 2, 1045-1402 (2004)
[18] Takahashi, N.; Ebihara, K.; Yoshida, K.; Nakata, T.; Ohashi, K.; Miyata, K., Investigation of simulated annealing method and its application to optimal design of die mold for orientation of magnetic powder, IEEE Trans. Magn., 32, 3, 1210-1213 (1996)
[19] Nelder, J. A.; Mead, R., A simplex method for function minimization, Comput. J. Sect. A / Sect. B, 7, 308-313 (1965) · Zbl 0229.65053
[20] M.J.D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, 2009, Cambridge NA Report NA2009/06, University of Cambridge, Cambridge.; M.J.D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, 2009, Cambridge NA Report NA2009/06, University of Cambridge, Cambridge.
[21] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., Fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[22] Sharma, D.; Deb, K.; Kishore, N. N., Domain-specific initial population strategy for compliant mechanisms using customized genetic algorithm, Struct. Multidiscip. Optim., 43, 4, 541-554 (2011)
[23] Di Barba, P.; Dughiero, F.; Forzan, M.; Sieni, E., Migration-corrected NSGA-II for improving multiobjective design optimization in electromagnetics, Int. J. Appl. Electromagn. Mech., 51, 2, 161-172 (2016)
[24] Sieni, E.; Di Barba, P.; Forzan, M., Migration NSGA: method to improve a non-elitist searching of Pareto front, with application in magnetics, Inverse Probl. Sci. Eng., 24, 4, 543-566 (2016) · Zbl 1342.78009
[25] Di Barba, P., Multi-objective wind-driven optimisation and magnet design, Electron. Lett., 52, 14, 1216-1217 (2016)
[26] Atanassov, E.; Gurov, T.; Karaivanova, A., Numerical methods for scientific computations and advanced applications, Comput. Math. Appl., 70, 11, 2719-2725 (2015) · Zbl 1443.65006
[27] Martinez-Cantin, R., Bayesopt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits, J. Mach. Learn. Res., 15, 3735-3739 (2014) · Zbl 1312.68002
[28] Karban, P.; Mach, F.; Kůs, P.; Pãnek, D.; Doležel, I., Numerical solution of coupled problems using code agros2d, Computing, 95, 1 Supplement, 381-408 (2013)
[29] Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kanschat, G.; Kronbichler, M.; Maier, M.; Turcksin, B.; Wells, D., The deal.II library, version 8.4, J. Numer. Math., 24, 3 (2016) · Zbl 1348.65187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.