×

Diluted axion star collisions with neutron stars. (English) Zbl 1486.85002

MSC:

85A05 Galactic and stellar dynamics
83C56 Dark matter and dark energy
70F35 Collision of rigid or pseudo-rigid bodies
81V05 Strong interaction, including quantum chromodynamics
81V25 Other elementary particle theory in quantum theory
83C50 Electromagnetic fields in general relativity and gravitational theory
78A45 Diffraction, scattering
83B05 Observational and experimental questions in relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Turner, Michael S., Windows on the Axion, Phys. Rept., 197, 67-97 (1990) · doi:10.1016/0370-1573(90)90172-X
[2] Preskill, John; Wise, Mark B.; Wilczek, Frank; Srednicki, M. A., Cosmology of the Invisible Axion, Phys. Lett. B, 120, 127-132 (1983) · doi:10.1016/0370-2693(83)90637-8
[3] Abbott, L. F.; Sikivie, P.; Srednicki, M. A., A Cosmological Bound on the Invisible Axion, Phys. Lett. B, 120, 133-136 (1983) · doi:10.1016/0370-2693(83)90638-X
[4] Dine, Michael; Fischler, Willy; Srednicki, M. A., The Not So Harmless Axion, Phys. Lett. B, 120, 137-141 (1983) · doi:10.1016/0370-2693(83)90639-1
[5] Pendlebury, J. M., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.092003
[6] Graner, B.; Chen, Y.; Lindahl, E. G.; Heckel, B. R., Reduced Limit on the Permanent Electric Dipole Moment of Hg199, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.161601
[7] Peccei, R. D.; Quinn, Helen R., CP Conservation in the Presence of Instantons, Phys. Rev. Lett., 38, 1440-1443 (1977) · doi:10.1103/PhysRevLett.38.1440
[8] Weinberg, Steven, A New Light Boson?, Phys. Rev. Lett., 40, 223-226 (1978) · doi:10.1103/PhysRevLett.40.223
[9] Wilczek, Frank, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett., 40, 279-282 (1978) · doi:10.1103/PhysRevLett.40.279
[10] Shifman, Mikhail A.; Vainshtein, A. I.; Zakharov, Valentin I., Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B, 166, 493-506 (1980) · doi:10.1016/0550-3213(80)90209-6
[11] Kim, Jihn E., Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett., 43, 103 (1979) · doi:10.1103/PhysRevLett.43.103
[12] Zhitnitsky, A. R., On Possible Suppression of the Axion Hadron Interactions. (In Russian), Sov. J. Nucl. Phys., 31, 260 (1980)
[13] Dine, Michael; Fischler, Willy; Srednicki, Mark, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B, 104, 199-202 (1981) · doi:10.1016/0370-2693(81)90590-6
[14] Svrcek, Peter; Witten, Edward, Axions In String Theory, JHEP, 06, 051 (2006) · doi:10.1088/1126-6708/2006/06/051
[15] Arvanitaki, Asimina; Dimopoulos, Savas; Dubovsky, Sergei; Kaloper, Nemanja; March-Russell, John, String Axiverse, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.123530
[16] Particle Data Group Collaboration; Zyla, P. A., Review of Particle Physics, PTEP, 2020 (2020) · doi:10.1093/ptep/ptaa104
[17] Hogan, C. J.; Rees, M. J., AXION MINICLUSTERS, Phys. Lett. B, 205, 228-230 (1988) · doi:10.1016/0370-2693(88)91655-3
[18] Seidel, Edward; Suen, Wai-Mo, Formation of solitonic stars through gravitational cooling, Phys. Rev. Lett., 72, 2516-2519 (1994) · doi:10.1103/PhysRevLett.72.2516
[19] Levkov, D. G.; Panin, A. G.; Tkachev, I. I., Gravitational Bose-Einstein condensation in the kinetic regime, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.151301
[20] Barranco, J.; Bernal, A., Self-gravitating system made of axions, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.043525
[21] Iwazaki, Aiichi, Fast Radio Bursts from Axion Stars (2014) · Zbl 1508.83012
[22] Iwazaki, Aiichi, FRBs and dark matter axions (2015) · Zbl 1371.81308
[23] Raby, Stuart, Axion star collisions with Neutron stars and Fast Radio Bursts, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.103004
[24] Bai, Yang; Hamada, Yuta, Detecting Axion Stars with Radio Telescopes, Phys. Lett. B, 781, 187-194 (2018) · doi:10.1016/j.physletb.2018.03.070
[25] Amin, Mustafa A.; Long, Andrew J.; Mou, Zong-Gang; Saffin, Paul, Dipole radiation and beyond from axion stars in electromagnetic fields, JHEP, 06, 182 (2021) · doi:10.1007/JHEP06(2021)182
[26] Barranco, J.; Monteverde, A. Carrillo; Delepine, D., Can the dark matter halo be a collisionless ensemble of axion stars?, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.103011
[27] Huang, Fa Peng; Kadota, Kenji; Sekiguchi, Toyokazu; Tashiro, Hiroyuki, Radio telescope search for the resonant conversion of cold dark matter axions from the magnetized astrophysical sources, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.123001
[28] Hook, Anson; Kahn, Yonatan; Safdi, Benjamin R.; Sun, Zhiquan, Radio Signals from Axion Dark Matter Conversion in Neutron Star Magnetospheres, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.241102
[29] Garbrecht, B.; McDonald, J. I., Axion configurations around pulsars, JCAP, 07 (2018) · Zbl 1527.85002 · doi:10.1088/1475-7516/2018/07/044
[30] Fortin, Jean-François; Guo, Huai-Ke; Harris, Steven P.; Sheridan, Elijah; Sinha, Kuver, Magnetars and axion-like particles: probes with the hard X-ray spectrum, JCAP, 06 (2021) · doi:10.1088/1475-7516/2021/06/036
[31] Battye, R. A.; Garbrecht, B.; McDonald, J. I.; Srinivasan, S., Radio line properties of axion dark matter conversion in neutron stars, JHEP, 09, 105 (2021) · doi:10.1007/JHEP09(2021)105
[32] Kavanagh, Bradley J.; Edwards, Thomas D. P.; Visinelli, Luca; Weniger, Christoph, Stellar disruption of axion miniclusters in the Milky Way, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.063038
[33] Edwards, Thomas D. P.; Kavanagh, Bradley J.; Visinelli, Luca; Weniger, Christoph, Transient Radio Signatures from Neutron Star Encounters with QCD Axion Miniclusters, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.131103
[34] Buckley, James H.; Dev, P. S. Bhupal; Ferrer, Francesc; Huang, Fa Peng, Fast radio bursts from axion stars moving through pulsar magnetospheres, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.043015
[35] Prabhu, Anirudh; Rapidis, Nicholas M., Resonant Conversion of Dark Matter Oscillons in Pulsar Magnetospheres, JCAP, 10 (2020) · doi:10.1088/1475-7516/2020/10/054
[36] Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong, Dense Axion Stars, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.121801
[37] Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank, Dilute and dense axion stars, Phys. Lett. B, 777, 64-72 (2018) · doi:10.1016/j.physletb.2017.12.010
[38] Hui, Lam; Ostriker, Jeremiah P.; Tremaine, Scott; Witten, Edward, Ultralight scalars as cosmological dark matter, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.043541
[39] Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David, Tidal disruption of fuzzy dark matter subhalo cores, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.063507
[40] Marsh, David J. E., Axion Cosmology, Phys. Rept., 643, 1-79 (2016) · doi:10.1016/j.physrep.2016.06.005
[41] Schive, Hsi-Yu; Chiueh, Tzihong; Broadhurst, Tom, Cosmic Structure as the Quantum Interference of a Coherent Dark Wave, Nature Phys., 10, 496-499 (2014) · doi:10.1038/nphys2996
[42] Schwabe, Bodo; Niemeyer, Jens C.; Engels, Jan F., Simulations of solitonic core mergers in ultralight axion dark matter cosmologies, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.043513
[43] Woo, Tak-Pong, High Resolution Simulation on Structure Formation with Extremely Light Bosonic Dark Matter, Astrophys. J., 697, 850-861 (2009) · doi:10.1088/0004-637X/697/1/850
[44] Mocz, Philip; Vogelsberger, Mark; Robles, Victor H.; Zavala, Jesús; Boylan-Kolchin, Michael; Fialkov, Anastasia, Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes, Mon. Not. Roy. Astron. Soc., 471, 4559-4570 (2017) · doi:10.1093/mnras/stx1887
[45] May, Simon; Springel, Volker, Structure formation in large-volume cosmological simulations of fuzzy dark matter: Impact of the non-linear dynamics (2021) · doi:10.1093/mnras/stab1764
[46] E. Madelung, Quantentheorie in hydrodynamischer form, Z. Phys.40 (1927) 322. · JFM 52.0969.06 · doi:10.1007/bf01400372
[47] Li, Xinyu; Hui, Lam; Bryan, Greg L., Numerical and Perturbative Computations of the Fuzzy Dark Matter Model, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.063509
[48] Hopkins, Philip F., A Stable Finite-Volume Method for Scalar-Field Dark Matter, Mon. Not. Roy. Astron. Soc., 489, 2367-2376 (2019) · doi:10.1093/mnras/stz1922
[49] Veltmaat, Jan; Niemeyer, Jens C., Cosmological particle-in-cell simulations with ultralight axion dark matter, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.123523
[50] Mocz, Philip; Succi, Sauro, Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics, Phys. Rev. E, 91 (2015) · doi:10.1103/PhysRevE.91.053304
[51] Nori, M.; Baldi, M., AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models, Mon. Not. Roy. Astron. Soc., 478, 3935-3951 (2018) · doi:10.1093/mnras/sty1224
[52] Nori, Matteo; Murgia, Riccardo; Iršič, Vid; Baldi, Marco; Viel, Matteo, Lyman α forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies, Mon. Not. Roy. Astron. Soc., 482, 3227-3243 (2019) · doi:10.1093/mnras/sty2888
[53] Veltmaat, Jan; Niemeyer, Jens C.; Schwabe, Bodo, Formation and structure of ultralight bosonic dark matter halos, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.043509
[54] Marsh, David J. E.; Pop, Ana-Roxana, Axion dark matter, solitons and the cusp-core problem, Mon. Not. Roy. Astron. Soc., 451, 2479-2492 (2015) · doi:10.1093/mnras/stv1050
[55] Chavanis, P. H.; Delfini, L., Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.043532
[56] Guzman, F. Siddhartha; Urena-Lopez, L. Arturo, Evolution of the Schrodinger-Newton system for a selfgravitating scalar field, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.124033
[57] Springel, Volker; Pakmor, Rüdiger; Zier, Oliver; Reinecke, Martin, Simulating cosmic structure formation with the GADGET-4 code (2020) · doi:10.1093/mnras/stab1855
[58] V.S. Safronov, Evolution of the protoplanetary cloud and formation of the earth and planets, Israel Program for Scientific Translation (1972).
[59] Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M., A Universal density profile from hierarchical clustering, Astrophys. J., 490, 493-508 (1997) · doi:10.1086/304888
[60] Tamm, A.; Tempel, E.; Tenjes, P.; Tihhonova, O.; Tuvikene, T., Stellar mass map and dark matter distribution in M31, Astron. Astrophys., 546, A4 (2012) · doi:10.1051/0004-6361/201220065
[61] Burkert, A., The Structure of dark matter halos in dwarf galaxies, Astrophys. J. Lett., 447, L25 (1995) · doi:10.1086/309560
[62] H. E.S. S. Collaboration; Aharonian, F., Observations of the Sagittarius Dwarf galaxy by the H.E.S.S. experiment and search for a Dark Matter signal, Astropart. Phys., 29, 55-62 (2008) · doi:10.1016/j.astropartphys.2007.11.007
[63] Safdi, Benjamin R.; Sun, Zhiquan; Chen, Alexander Y., Detecting Axion Dark Matter with Radio Lines from Neutron Star Populations, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.123021
[64] Lorimer, D. R., The Parkes multibeam pulsar survey: VI. Discovery and timing of 142 pulsars and a Galactic population analysis, Mon. Not. Roy. Astron. Soc., 372, 777-800 (2006) · doi:10.1111/j.1365-2966.2006.10887.x
[65] Goldreich, Peter; Julian, William H., Pulsar electrodynamics, Astrophys. J., 157, 869 (1969) · doi:10.1086/150119
[66] Faucher-Giguere, Claude-Andre; Kaspi, Victoria M., Birth and evolution of isolated radio pulsars, Astrophys. J., 643, 332-355 (2006) · doi:10.1086/501516
[67] Bates, Sam; Lorimer, Duncan; Rane, Akshaya; Swiggum, Joe, PsrPopPy: An open-source package for pulsar population simulations, Mon. Not. Roy. Astron. Soc., 439, 2893-2902 (2014) · doi:10.1093/mnras/stu157
[68] Raffelt, Georg; Stodolsky, Leo, Mixing of the Photon with Low Mass Particles, Phys. Rev. D, 37, 1237 (1988) · doi:10.1103/PhysRevD.37.1237
[69] Millar, Alexander J.; Baum, Sebastian; Lawson, Matthew; Marsh, M. C. David, Axion-photon conversion in strongly magnetised plasmas, JCAP, 11 (2021) · Zbl 1487.83069 · doi:10.1088/1475-7516/2021/11/013
[70] Perley, R. A.; Chandler, C. J.; Butler, B. J.; Wrobel, J. M., The Expanded Very Large Array – a New Telescope for New Science, Astrophys. J. Lett., 739, L1 (2011) · doi:10.1088/2041-8205/739/1/L1
[71] Braun, Robert; Bonaldi, Anna; Bourke, Tyler; Keane, Evan; Wagg, Jeff, Anticipated Performance of the Square Kilometre Array - Phase 1 (SKA1) (2019)
[72] Battye, Richard A.; Garbrecht, Bjoern; McDonald, Jamie I.; Pace, Francesco; Srinivasan, Sankarshana, Dark matter axion detection in the radio/mm-waveband, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.023504
[73] GBT, Proposer’s Guide for the Green Bank Telescope, https://science.nrao.edu/facilities/gbt/proposing/GBTpg.pdf.
[74] SKA, SKA Info Sheets, https://www.skatelescope.org/technical/info-sheets/.
[75] Tinyakov, Peter; Tkachev, Igor; Zioutas, Konstantin, Tidal streams from axion miniclusters and direct axion searches, JCAP, 01 (2016) · doi:10.1088/1475-7516/2016/01/035
[76] Dokuchaev, V. I.; Eroshenko, Yu. N.; Tkachev, I. I., Destruction of axion miniclusters in the Galaxy, J. Exp. Theor. Phys., 125, 434-442 (2017) · doi:10.1134/S1063776117080039
[77] Eggemeier, Benedikt; Niemeyer, Jens C., Formation and mass growth of axion stars in axion miniclusters, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.063528
[78] Chen, Jiajun; Du, Xiaolong; Lentz, Erik W.; Marsh, David J. E.; Niemeyer, Jens C., New insights into the formation and growth of boson stars in dark matter halos, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.083022
[79] Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom, Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations, Phys. Rev. Lett., 113 (2014) · doi:10.1103/PhysRevLett.113.261302
[80] Eggemeier, Benedikt; Redondo, Javier; Dolag, Klaus; Niemeyer, Jens C.; Vaquero, Alejandro, First Simulations of Axion Minicluster Halos, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.041301
[81] Guth, Alan H.; Hertzberg, Mark P.; Prescod-Weinstein, C., Do Dark Matter Axions Form a Condensate with Long-Range Correlation?, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.103513
[82] Davidson, Sacha; Schwetz, Thomas, Rotating Drops of Axion Dark Matter, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.123509
[83] Lorimer, D. R.; Bailes, M.; McLaughlin, M. A.; Narkevic, D. J.; Crawford, F., A bright millisecond radio burst of extragalactic origin, Science, 318, 777 (2007) · doi:10.1126/science.1147532
[84] R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comput.16 (1995) 151. · Zbl 0821.65048 · doi:10.1137/0916010
[85] A. Bayliss, A. Class and B.J. Matkowsky, Roundoff error in computing derivatives using the chebyshev differentiation matrix, J. Comput. Phys.116 (1994) 380. · Zbl 0826.65014 · doi:10.1006/jcph.1995.1036
[86] R. Baltensperger and J.-P. Berrut, The errors in calculating the pseudospectral differentiation matrices for C̆ebys̆ev-gauss-lobatto points, Comput. Math. Appl.37 (1999) 41. · Zbl 0940.65021 · doi:10.1016/s0898-1221(98)00240-5
[87] L.N. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics (2000). · Zbl 0953.68643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.