×

MST MEMS model order reduction: requirements and benchmarks. (English) Zbl 1089.74048

Summary: The needs for model reduction in microsystem technology (MST) are described from an engineering perspective. Two representative MST model reduction benchmarks are presented in order to facilitate further development in this area. The first benchmark application is from the area of electro-thermal simulation, the second one considers an electrostatically actuated beam as found in radio frequency applications. Model reduction is contrasted with compact modeling, which currently enjoys widespread use among engineers, and important challenges to be addressed are listed.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
78A55 Technical applications of optics and electromagnetic theory
80A22 Stefan problems, phase changes, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] d’Alessandro, V.; Rinaldi, N., A critical review of thermal models for electro-thermal simulation, Solid-State Electron., 46, 4, 487-496 (2002)
[3] Antoulas, A. C.; Sorensen, D. C., Approximation of large-scale dynamical systems: an overview, Appl. Math. Comput. Sci., 11, 5, 1093-1121 (2001) · Zbl 1024.93008
[4] Antoulas, A. C.; Sorensen, D. C.; Gugercin, S., A survey of model reduction methods for large-scale systems, Contemp. Math., 280, 193-219 (2001) · Zbl 1048.93014
[5] Ati, A. A.; Napieralska, M.; Napieralski, A.; Ciota, Z., A new compact physical submicron mosfet model for circuit simulation, Microelectron. Eng., 51, 2, 373-392 (2000)
[6] Badía, J. M.; Benner, P.; Mayo, R.; Quintana-Ortí, E. S., Solving Large Sparse Lyapunov Equations on Parallel Computers, Lecture notes in Computer Science: Euro-Par 2002 Parallel Processing (2002), Springer: Springer Berlin, pp. 687-690. · Zbl 1068.65503
[8] Bai, Z. J., Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, Appl. Numer. Math., 43, 9-44 (2002) · Zbl 1012.65136
[9] Bai, Z. J.; Slone, R. D.; Smith, W. T., Error bound for reduced system model by Padé approximation via the Lanczos process, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst., 18, 2, 133-141 (1999)
[10] Barbone, P. E.; Givoli, D.; Patlashenko, I., Optimal modal reduction of vibrating substructures, Int. J. Numer. Meth. Eng., 57, 341-369 (2003) · Zbl 1062.74539
[12] Bechtold, T.; Rudnyi, E. B.; Korvink, J. G., Automatic generation of compact electro-thermal models for semiconductor devices, IEICE Trans. Electron., E86C, 459-465 (2003)
[13] Benner, P.; Quintana-Ortí, E. S.; Quintana-Ortí, G., State-space truncation methods for parallel model reduction of large-scale systems, Parallel Comput., 29, 1701-1722 (2003) · Zbl 1044.93012
[15] Brooks, B., Standardizing compact models for IC simulation, IEEE Circ. Dev., 10-13 (1999), Available from:
[16] Carter, G. K.; Kron, G., A.C. network analyzer study of the Schrödinger equation, Phys. Rev., 67, 1, 44-49 (1945) · Zbl 0061.29604
[17] Cheng, C.-K.; Lillis, J.; Lin, S.; Chang, N., Interconnect Analysis and Synthesis (2000.), John Wiley & Sons, Inc: John Wiley & Sons, Inc New York
[18] Clough, R. W.; Penzien, J., Dynamics of Structures (1993.), McGraw-Hill: McGraw-Hill New York
[19] Codecasa, L.; D’Amore, D.; Maffezzoni, P., Compact modeling of electrical devices for electrothermal analysis, IEEE Trans. Circ. Syst. I—Fundam. Theory Appl., 50, 465-476 (2003)
[20] Codecasa, L.; D’Amore, D.; Maffezzoni, P.; Batty, W., Analytical multipoint moment matching reduction of distributed thermal networks, IEEE Trans. Compon. Pack. Technol., 27, 87-95 (2004)
[21] Craig, R. R.; Bampton, M. C.C., Coupling of substructures for dynamic analysis, AIAA Journal, 6, 7, 1313-1319 (1968) · Zbl 0159.56202
[23] Daniel, L.; Siong, O. C.; Chay, L. S.; Lee, K. H.; White, J., A multiparameter moment-matching model-reduction approach for generating geometrically parametrized interconnect performance models, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst., 23, 5, 678-693 (2004)
[24] Enz, C. C.; Cheng, Y. H., MOS transistor modeling for RF IC design, IEEE J. Solid-State Circ., 35, 186-201 (2000)
[25] Freund, R. W., Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation, (Datta, B., Applied and Computational Control, Signals, and Circuits, vol. 1 (1999), Birkhauser: Birkhauser Boston, MA), 435-498, (Chapter 9). · Zbl 0967.93008
[26] Freund, R. W., Krylov-subspace methods for reduced-order modeling in circuit simulation, J. Comput. Appl. Math., 123, 395-421 (2000) · Zbl 0964.65082
[27] Freund, R. W., Model reduction methods based on Krylov subspaces, Acta Numerica, 12, 267-319 (2003) · Zbl 1046.65021
[28] (Gad-el-Hak, M., The MEMS Handbook (2002.), CRC Press: CRC Press Boca Raton) · Zbl 1060.74001
[29] Grasser, T.; Selberherr, S., Mixed-mode device simulation, Microelectron. J., 31, 873-881 (2000)
[30] Gunupudi, P. K.; Khazaka, R.; Nakhla, M. S.; Smy, T.; Celo, D., Passive parameterized time-domain macromodels for high-speed transmission-line networks, IEEE Trans. Microwave Theory Tech., 51, 12, 2347-2354 (2003)
[31] Hagleitner, C.; Hierlemann, A.; Brand, O.; Baltes, H., CMOS single chip gas detection systems—Part I, Sensors Update, 11, 101-155 (2003)
[32] Hagleitner, C.; Hierlemann, A.; Baltes, H., CMOS single chip gas detection systems—Part II, Sensors Update, 12, 51-120 (2003)
[33] Huang, H. H.; Usmani, A. S., Finite Element Analysis for Heat Transfer (1994.), Springer: Springer London
[36] Jackson, J. D., Classical Electrodynamics (1999.), Wiley: Wiley New York
[37] Kielkowski, R. M., SPICE: Practical Device Modeling (1995.), McGraw-Hill: McGraw-Hill New York
[38] Korvink, J. G.; Rudnyi, E. B.; Greiner, A.; Liu, Z., MEMS and NEMS simulation, (in: MEMS: A Practical Guide to Design, Analysis, and Applications (2005.), William Andrew Publishing)
[39] Kron, G., Electric circuit models of the Schrödinger equation, Phys. Rev., 67, 1, 39-43 (1945) · Zbl 0061.29603
[40] Kron, G., Equivalent Circuits of Electric Machinery (1967.), Dover Publications: Dover Publications New York
[41] Li, J. R.; White, J., Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl., 24, 1, 260-280 (2002) · Zbl 1016.65024
[42] Lienemann, J.; Salimbahrami, B.; Lohmann, B.; Korvink, J. G., A file format for the exchange of nonlinear dynamical ODE systems, in: Dimension Reduction of Large-scale Systems, Lecture Notes in Computational Science and Engineering (2005.), Springer-Verlag: Springer-Verlag Berlin/Heidelberg, Germany
[44] Menz, W.; Mohr, J.; Paul, O., Microsystem Technology (2001.), Wiley-VCH: Wiley-VCH Weinheim
[45] Mukherjee, T.; Fedder, G. K.; Ramaswany, D.; White, J., Emerging simulation approaches for micromachined devices, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst., 19, 1572-1589 (2000)
[46] Nakayama, W., Thermal issues in microsystems packaging, IEEE Trans. Adv. Pack., 23, 602-607 (2000)
[47] Nathan, A.; Baltes, H., Microtransducer CAD (1999.), Springer: Springer New York
[48] Penzl, T., A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21, 1401-1418 (2000) · Zbl 0958.65052
[49] Petit, D.; Hachette, R., Model reduction in linear heat conduction: use of interface fluxes for the numerical coupling, Int. J. Heat Mass Transfer, 41, 21, 3177-3189 (1998) · Zbl 0944.74649
[50] Phillips, J. R., Projection-based approaches for model reduction of weakly nonlinear, time-varying systems, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst., 22, 171-187 (2003)
[51] Rewienski, M.; White, J., A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst., 22, 155-170 (2003)
[52] Rossi, C., Micropropulsion for space—a survey of MEMS-based micro-thrusters and their solid propellant technology, Sensors Update, 10, 257-292 (2002)
[53] Rudnyi, E. B.; Korvink, J. G., Automatic model reduction for transient simulation of MEMS-based devices, Sensors Update, 11, 3-33 (2002)
[56] Senturia, S. D., Microsystem Design (2001.), Kluwer: Kluwer Boston
[57] Sidi-Ali-Cherif, S.; Grigoriadis, K. M., Efficient model reduction of large scale systems using Krylov-subspace iterative methods, Int. J. Eng. Sci., 41, 507-520 (2003) · Zbl 1211.93032
[58] Silverberg, L.; Weaver, L., Dynamics and control of electrostatic structures, J. Appl. Mech., 63, 383-391 (1996) · Zbl 0886.93046
[59] Stehr, M.; Messner, S.; Sandmaier, H.; Zengerle, R., The VAMP—a new device for handling liquids or gases, Sens. Actuators A, 57, 153-157 (1996)
[60] Sze, S. M., Semiconductor Devices—Physics and Technology (1985), John Wiley & Sons: John Wiley & Sons New York
[62] Watanabe, T.; Asai, H., A framework for macromodeling and mixed-mode simulation of circuits/interconnects and electromagnetic radiations, IEICE Trans. Fund. Electron. Commun. Comput. Sci., 41, 507-520 (2003)
[63] Weaver, W.; Timoshenko, S. P.; Young, D. H., Vibration Problems in Engineering (1990), Wiley Interscience: Wiley Interscience New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.