×

Model order reduction in microelectronics. (English) Zbl 1466.78016

Benner, Peter (ed.) et al., Model order reduction. Volume 3: Applications. Berlin: De Gruyter. 111-143 (2021).
Summary: This chapter deals with the application of model order reduction (MOR) in the area of microelectronics. It mainly focuses on the diligent efforts of the MOR community in addressing one of the main challenges pertaining to circuit simulation, namely, the simulation of high-speed interconnects. A general framework for formulating the circuit equations that is commonly used in commercial circuit simulators is presented. Incorporation of high-speed interconnect structures within the general formulation of the circuit equations is described. Current challenges in the MOR of interconnect circuits with a large number of ports are presented along with some of the recent MOR techniques to handle this kind of circuits. In addition, techniques for the reduction of active stable circuits are reviewed with emphasis on guaranteeing the stability of the reduced circuits by construction. Several application examples are presented to highlight the performance and computational advantages attained by using MOR techniques within the circuit simulation environments.
For the entire collection see [Zbl 1455.93002].

MSC:

78A55 Technical applications of optics and electromagnetic theory
62P30 Applications of statistics in engineering and industry; control charts
93A15 Large-scale systems
78M34 Model reduction in optics and electromagnetic theory
37M05 Simulation of dynamical systems
34K20 Stability theory of functional-differential equations
34H15 Stabilization of solutions to ordinary differential equations
94C05 Analytic circuit theory

Software:

PMTBR; SparseRC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Achar and M. S. Nakhla, Simulation of high-speed interconnects, IEEE Proc., 89 (5) (May 2001), 693-728.
[2] V. Adler and E. G. Friedman, Repeater design to reduce delay and power in resistive interconnect, IEEE Trans. Circuits Syst. II, 45 (5) (May 1998), 607-616.
[3] J. Aliaga, D. Boley, R. Freund, and V. Hernández, A Lanczos-type method for multiple starting vectors, Math. Comput., 69 (232) (May 2000), 1577-1601. · Zbl 0953.65018
[4] C. Alpert and A. Devgan, Wire segmenting for improved buffer insertion, in Proc. 34th Design Automat. Conf., pp. 588-593, Jun 1997.
[5] B. D. O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis, Prentice Hall, Englewood Cliffs, NJ, 1973.
[6] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, Philadelphia, PA, USA, 2005. · Zbl 1112.93002
[7] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quat. Appl. Math., 9 (1) (Apr 1951), 17-29. · Zbl 0042.12801
[8] Z. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, Appl. Numer. Math., 43 (1-2) (2002), 9-44. · Zbl 1012.65136
[9] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison Wesley, Boston, MA, USA, 1990.
[10] H. B. Bakoglu and J. Meindl, Optimal interconnect circuits for VLSI, IEEE Trans. Electron Devices, 32 (5) (May 1985), 903-909.
[11] P. Benner, L. Feng, and E. B. Rudnyi, Using the superposition property for model reduction of linear systems with a large number of inputs, in Proc. 18th Int. Symp. Math. Theory Netw. Syst., Blacksburg, Virginia, USA, pp. 1-12, Jul 2008.
[12] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. Silveira (eds.), Model Order Reduction. Volume 1: System-and Data-Driven Methods and Algorithms, De Gruyter, Berlin, 2020.
[13] P. Benner, M. Hinze, and E. J. W. ter Maten (eds.), Model Reduction for Circuit Simulation, Springer-Verlag, Berlin, Heidelberg, Germany, 2011.
[14] P. Benner, V. Mehrmann, and D. C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol. 45, Springer-Verlag, Berlin, Heidelberg, Germany, 2005. · Zbl 1066.65004
[15] P. Benner and A. Schneider, Model order and terminal reduction approaches via matrix decomposition and low rank approximation, in J. Roos and L. R. J. Costa (eds.) Sci. Comput. Elect. Eng. SCEE 2008, pp. 523-530, Springer-Verlag, Berlin, Heidelberg, Germany, 2010.
[16] G. Berkooz, P. Holmes, and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25 (Jan 1993), 539-575.
[17] B. N. Bond and L. Daniel, Guaranteed stable projection-based model reduction for indefinite and unstable linear systems, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA, USA, pp. 728-735, Nov 2008.
[18] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, USA, 1994. · Zbl 0816.93004
[19] S. V. Brian and D. O. Anderson, Network Analysis and Synthesis: a Modern Systems Theory Approach, 2nd ed., Dover, New York, NY, USA, 2006.
[20] M. Celik, L. Pileggi, and A. Odabasioglu, IC Interconnect Analysis, Kluwer Academic, Boston, MA, USA, 2002.
[21] E. Chiprout and M. S. Nakhla, Asymptotic Waveform Evaluation and Moment Matching for Interconnect Analysis, Kluwer Academic, Boston, MA, USA, 1994. · Zbl 0798.94002
[22] M. H. Chowdhury, C. S. Amin, Y. I. Ismail, C. V. Kashyap, and B. L. Krauter, Realizable reduction of RLC circuits using node elimination, in Proc. IEEE Int. Circuits Sys. Symp., vol. 3, Bangkok, Thailand, pp. III.494-III.497, May 2003.
[23] C. Coelho, J. Phillips, and L. Silveira, Robust rational function approximation algorithm for model generation, in Proc. 36th ACM/IEEE Design Automat. Conf., New Orleans, LA, USA, pp. 207-212, Jun 1999.
[24] L. Daniel, O. C. Siong, L. Chay, K. H. Lee, and J. White, A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 23 (5) (May 2004), 678-693.
[25] C. de Villemagne and R. E. Skelton, Model reductions using a projection formulation, in Proc. 26th IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 461-466, 1987.
[26] S. Dhar and M. A. Franklin, Optimum buffer circuits for driving long uniform lines, IEEE J. Solid-State Circuits, 26 (1) (Jan 1991), 32-40.
[27] N. Dong and J. Roychowdhury, General-purpose nonlinear model-order reduction using piecewise-polynomial representations, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 27 (2) (2008), 249-264.
[28] A. Dounavis, R. Achar, and M. Nakhla, A general class of passive macromodels for lossy multiconductor transmission lines, IEEE Trans. Microw. Theory Tech., 49 (10) (Oct 2001), 1686-1696.
[29] A. Dounavis, X. Li, M. S. Nakhla, and R. Achar, Passive closed-form transmission line model for general purpose circuit simulators, IEEE Trans. Microw. Theory Tech., 47 (12) (Dec 1999), 2450-2459.
[30] P. J. H. Elias and N. P. van der Meijs, Extracting circuit models for large RC interconnections that are accurate up to a predefined signal frequency, in Proc. ACM/IEEE Design Automat. Conf., Las Vegas, NV, USA, pp. 764-769, Jun 1996.
[31] M. Farhan, E. Gad, M. Nakhla, and R. Achar, New method for fast transient simulation of large linear circuits using high-order stable methods, IEEE Trans. Compon. Packag. Technol., 3 (4) (2013), 661-669.
[32] M. Farhan, E. Gad, M. Nakhla, and R. Achar, Fast simulation of microwave circuits with nonlinear terminations using high-order stable methods, IEEE Trans. Microw. Theory Tech., 61 (1) (2013), 360-371.
[33] P. Feldmann, Model order reduction techniques for linear systems with large numbers of terminals, in Proc. Design Auto. Test Eur. Conf. Exhib., vol. 2, Paris, France, pp. 944-947, Feb 2004.
[34] P. Feldmann and R. W. Freund, Efficient linear circuit analysis by Padé approximation via the Lanczos process, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 14 (5) (May 1995), 639-649.
[35] P. Feldmann and R. W. Freund, Reduced-order modeling of large linear subcircuits via a block Lanczos algorithm, in Proc. ACM/IEEE Design Automat. Conf., pp. 474-479, San Francisco, CA, USA, Jun 1995.
[36] P. Feldmann and F. Liu, Sparse and efficient reduced order modeling of linear subcircuits with large number of terminals, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA, USA, pp. 88-92, Nov 2004.
[37] R. W. Freund, Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation, in B. N. Datta (ed.) Applied and Computational Control, Signals, and Circuits, vol. 1, Chapter 9, pp. 435-498, Birkhäuser Boston, Boston, MA, USA, 1999. · Zbl 0967.93008
[38] R. W. Freund, Krylov-subspace methods for reduced-order modeling in circuit simulation, Comput. Appl. Math., 123 (1-2) (Nov 2000), 395-421. · Zbl 0964.65082
[39] R. W. Freund, Structure-preserving model order reduction of RLC circuit equations, in W. Schilders, H. van der Vorstand, and J. Rommes (eds.) Model Order Reduction: Theory, Research Aspects and Applications, Chapter 3, pp. 49-73, Springer, Berlin, Heidelberg, Germany, 2008. · Zbl 1164.94014
[40] R. W. Freund, The SPRIM algorithm for structure-preserving order reduction of general RCL circuits, in P. Benner, M. Hinze, and E. J. W. ter Maten (eds.) Model Reduction for Circuit Simulation, Chapter 2, pp. 25-52, Springer-Verlag, Berlin, Heidelberg, Germany, 2011.
[41] R. W. Freund, The SPRIM algorithm for structure-preserving order reduction of general RCL circuits, in P. Benner, M. Hinze, and E. J. W. ter Maten (eds.) Model Reduction for Circuit Simulation, Chapter 2, pp. 25-52, Springer-Verlag, Berlin, Heidelberg, Germany, 2011.
[42] R. W. Freund and P. Feldmann, Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA, USA, pp. 280-287, Nov 1996.
[43] R. W. Freund and P. Feldmann, The SyMPVL algorithm and its applications to interconnect simulation, in Proc. Int. Conf. Simul. Semicond. Process. Devices, Cambridge, MA, USA, pp. 113-116, Sep. 1997.
[44] R. W. Freund and P. Feldmann, Reduced-order modeling of large linear passive multi-terminal circuits using matrix-padé approximation, in Proc. Design Automat. Test Eur. Conf., pp. 530-537, Feb 1998.
[45] E. Gad, R. Khazaka, M. S. Nakhla, and R. Griffith, A circuit reduction technique for finding the steady-state solution of nonlinear circuits, IEEE Trans. Microw. Theory Tech., 48 (12) (2000), 2389-2396.
[46] E. Gad and M. Nakhla, Efficient model reduction of linear periodically time-varying systems via compressed transient system function, IEEE Trans. Circuits Syst. I, 52 (6) (Jun 2005), 1188-1204. · Zbl 1374.94897
[47] E. Gad, M. Nakhla, R. Achar, and Y. Zhou, A-stable and L-stable high-order integration methods for solving stiff differential equations, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 28 (9) (Sep 2009), 1359-1372.
[48] K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their ℒ ∞ -error bounds, Int. J. Control, 36 (6) (Jun 1984), 1115-1193. · Zbl 0543.93036
[49] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins Univ. Press, Baltimore, MD, USA, 1996. · Zbl 0865.65009
[50] E. Grimme, Krylov Projection Methods for Model Reduction, PhD dissertation, Dept. Elect. Comput. Eng., Univ. Illinois Urbana-Champaign, Champaign, IL, USA, 1997.
[51] E. J. Grimme, D. C. Sorensen, and P. V. Dooren, Model reduction of state space systems via an implicitly restarted Lanczos method, Numer. Algorithms, 12 (1996), 1-31. · Zbl 0870.65052
[52] S. Grivet-Talocia, The time-domain vector fitting algorithm for linear macromodeling, AEÜ, Int. J. Electron. Commun., 58 (4) (2004), 293-295.
[53] S. Grivet-Talocia, H.-M. Huang, A. E. Ruehli, F. Canavero, and I. M. Elfadel, Transient analysis of lossy transmission lines: An efficient approach based on the method of characteristics, IEEE Trans. Adv. Packaging, 27 (1) (Feb 2004), 45-56.
[54] P. Gunupudi, R. Khazaka, and M. Nakhla, Analysis of transmission line circuits using multidimensional model reduction techniques, IEEE Trans. Adv. Packaging, 25 (2) (May 2002), 174-180.
[55] P. K. Gunupudi, M. Nakhla, and A. Ramachandra, Simulation of high-speed distributed interconnects using Krylov-space techniques, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 19 (July 2000), 799-807.
[56] B. Gustavsen and A. Semlyen, Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Deliv., 14 (3) (Jul 1999), 1052-1061.
[57] C.-W. Ho, A. Ruehli, and P. Brennan, The modified nodal approach to network analysis, IEEE Trans. Circuits Syst., 22 (6) (Jun. 1975), 504-509.
[58] H. Hotelling, Simplified calculation of principal components, Psychometrika, 1 (1) (1936), 27-35. · JFM 62.1352.04
[59] H. Huang, J. B. Bernstein, and M. Peckerar, Combined channel segmentation and buffer insertion for routability and performance improvement of field programmable analog arrays, in Proc. IEEE Int. Conf. Comput. Design, pp. 490-495, Oct 2004.
[60] R. Ionutiu, J. Rommes, and W. H. A. Schilders, Sparserc: Sparsity preserving model reduction for RC circuits with many terminals, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 30 (12) (Dec 2011), 1828-1841.
[61] Y. I. Ismail and E. G. Friedman, Effects of inductance on the propagation delay and repeater insertion in VLSI circuits, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 8 (2) (Apr 2000), 195-206.
[62] I. M. Jaimoukha and E. Kasenally, Implicitly restarted Krylov subspace methods for stable partial realizations, SIAM J. Matrix Anal. Appl., 18 (3) (1997), 633-652. · Zbl 0873.65065
[63] H. W. Johnson and M. Graham, High-Speed Digital Design: A Handbook of Black Magic, Prentice Hall, New York, NY, USA, 1993.
[64] I. Kalashnikova, B. van Bloemen Waanders, S. Arunajatesan, and M. Barone, Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment, Comput. Methods Appl. Mech. Eng., 272 (Apr 2014), 251-270. · Zbl 1296.93165
[65] K. J. Kerns, Accurate and Stable Reduction of RLC Networks Using Split Congruence Transformations, PhD thesis, Dep. Electrical Eng, Univ. Washington, Location Seattle, Washington, USA, Sep 1996.
[66] K. J. Kerns and A. T. Yang, Stable and efficient reduction of large, multiport RC networks by pole analysis via congruence transformations, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 16 (7) (Jul 1997), 734-744.
[67] K. J. Kerns and A. T. Yang, Preservation of passivity during RLC network reduction via split congruence transformations, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 17 (7) (Jul 1998), 582-591.
[68] E. S. Kuh and R. A. Rohrer, Theory of Linear Active Networks, Holden-Day, San Francisco, CA, USA, 1967. · Zbl 0155.22401
[69] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Inst. Bur. Stand., 45 (4) (Oct 1950), 255-282.
[70] J.-R. Li, F. Wang, and J. White, An efficient Lyapunov equation-based approach for generating reduced-order models of interconnect, in Proc. 36th ACM/IEEE Design Automat. Conf., New Orleans, LA, USA, pp. 1-6, Jun 1999.
[71] J.-R. Li and J. White, Efficient model reduction of interconnect via approximate system gramians, in Proc. EEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA, USA, pp. 380-383, Nov 1999.
[72] P. Li and L. T. Pileggi, Compact reduced-order modeling of weakly nonlinear analog and RF circuits, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 24 (2) (Feb 2005), 184-203.
[73] Y. Lin and E. Gad, Formulation of the Obreshkov-based transient circuit simulator in the presence of nonlinear memory elements, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 34 (1) (Jan 2015), 86-94.
[74] H. Liu, L. Daniel, and N. Wong, Model reduction and simulation of nonlinear circuits via tensor decomposition, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 34 (7) (2015), 1059-1069.
[75] P. Liu, Z. Qi, A. Aviles, and S. X. Tan, A general method for multi-port active network reduction and realization, in Proc. IEEE Int. Behav. Model. Simul. Workshop, San Jose, CA, USA, pp. 7-12, Sep 2005.
[76] P. Liu and W. Shi, Model order reduction of linear networks with massive ports via frequency-dependent port packing, in Proc. ACM/IEEE Design Automat. Conf., pp. 267-272, Jul 2006.
[77] P. Liu, S. Tan, H. Li, Z. Qi, J. Kong, B. McGaughy, and L. He, An efficient method for terminal reduction of interconnect circuits considering delay variations, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA, USA, pp. 821-826, Nov 2005.
[78] P. Liu, S. Tan, B. McGaughy, L. Wu, and L. He, TermMerg: an efficient terminal-reduction method for interconnect circuits, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 26 (8) (Aug 2007), 1382-1392.
[79] P. Liu, S. D. Tan, B. Yan, and B. McGaughy, An extended SVD-based terminal and model order reduction algorithm, in Proc. IEEE Int. Behav. Modeling Simul. Workshop, San Jose, CA, USA, pp. 44-49, Sep 2006.
[80] P. Liu, S. X. D. Tan, B. McGaughy, and L. Wu, Compact reduced order modeling for multiple-port interconnects, in Proc. Int. Symp. Qual. Electron. Design, San Jose, CA, USA, pp. 413-418, Mar 2006.
[81] C. B. Moore, Principal component analysis in linear systems: Controllability, Observability, and Model Reduction, IEEE Trans. Autom. Control, AC-26 (Feb 1981), 17-32. · Zbl 0464.93022
[82] F. N. Najm, Circuit Simulation, John Wiley, Hoboken, NJ, USA, 2010.
[83] N. M. Nakhla, A. Dounavis, R. Achar, and M. S. Nakhla, DEPACT: Delay-extraction-based compact transmission-line macromodeling algorithm, IEEE Trans. Adv. Packaging, 28 (1) (Feb 2005), 13-23.
[84] R. W. Newcomb, Linear Multiport Synthesis, McGraw-Hill, New York, 1966.
[85] B. Nouri, R. Achar, and M. S. Nakhla, z-Domain orthonormal basis functions for physical system identifications, IEEE Trans. Adv. Packaging, 33 (1) (Feb 2010), 293-307.
[86] B. Nouri, M. S. Nakhla, and R. Achar, Efficient reduced-order macromodels of massively coupled interconnect structures via clustering, IEEE Trans. Compon. Packag. Manuf. Technol., 3 (5) (May 2013), 826-840.
[87] B. Nouri, M. S. Nakhla, and X. Deng, Stable model-order reduction of active circuits, IEEE Trans. Compon. Packag. Manuf. Technol., 7 (5) (May 2017), 710-719.
[88] A. Odabasioglu, M. Celik, and L. Pileggi, PRIMA: passive reduced-order interconnect macromodeling algorithm, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 17 (8) (Aug 1998), 645-654.
[89] D. Oyaro and P. Triverio, TurboMOR-RC: An efficient model order reduction technique for RC networks with many ports, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 35 (10) (Oct 2016), 1695-1706.
[90] V. Papakos and I. Jaimoukha, A deflated implicitly restarted Lanczos algorithm for model reduction, in Proc. 42nd IEEE Conf. Decision Control, vol. 3, Maui, HI, USA, pp. 2902-2907, Dec 2003.
[91] C. R. Paul, Analysis of Multiconductor Transmission Lines, 2nd ed., Wiley, Hoboken, NJ, USA, 2008.
[92] J. Phillips, L. Daniel, and L. Silveira, Guaranteed passive balancing transformations for model order reduction, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 22 (8) (Aug 2003), 1027-1041.
[93] J. Phillips, L. Daniel, and L. M. Silveira, Guaranteed passive balancing transformations for model order reduction, in Proc. 39th Annu. Design Automat. Conf., New Orleans, LA, pp. 52-57, 2002.
[94] J. R. Phillips, Projection-based approaches for model reduction of weakly nonlinear, time-varying systems, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 22 (2) (Feb 2003), 171-187.
[95] J. R. Phillips and L. Silveira, Poor man’s TBR: a simple model reduction scheme, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 24 (1) (Jan 2005), 43-55.
[96] L. T. Pillage and R. A. Rohrer, Asymptotic waveform evaluation for timing analysis, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 9 (Apr. 1990), 352-366.
[97] Z. Qin and C.-K. Cheng, Realizable parasitic reduction using generalized Y-Δ transformation, in Proc. ACM/IEEE Design Automat. Conf., Anaheim, CA, USA, pp. 220-225, Jun 2003.
[98] V. Raghavan, R. Rohrer, L. Pillage, J. Lee, J. Bracken, and M. Alaybeyi, AWE-inspired, in Proc. IEEE Custom Integr. Circuits Conf., pp. 18.1.1-18.1.8. May 1993.
[99] M. Rewienski and J. White, A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 22 (2) (2003), 155-170.
[100] J. Rommes and W. H. A. Schilders, Efficient methods for large resistor networks, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 29 (1) (Jan 2010), 28-39.
[101] J. Roychowdhury, Reduced-order modeling of time-varying systems, IEEE Trans. Circuits Syst. I, 46 (10) (Oct. 1999), 1273-1288.
[102] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, PA, USA, 2003. · Zbl 1002.65042
[103] S. B. Salimbahrami, Structure Preserving Order Reduction of Large Scale Second Order Models, PhD thesis, Faculty of Mech. Eng., Tech. Univ. Munich, Munich, Germany, Jun 2005.
[104] A. J. Sasane, Hankel Norm Approximation for Infinite-Dimensional Systems, Lecture Notes in Control and Information Sciences, vol. 277, Springer, Berlin, Heidelberg, Germany, 2002. · Zbl 1009.93501
[105] W. H. A. Schilders, H. A. van der Vorstand, and J. Rommes (eds.), Model Order Reduction: Theory, Research Aspects and Applications, Springer-Verlag, Berlin, Heidelberg, Germany, 2008. · Zbl 1143.65004
[106] R. E. Scott, Linear Circuits, M. W. Essigmann (ed.), Addison-Wesley, New York, NY, USA, 1960. · Zbl 0094.22704
[107] R. C. Selga, B. Lohmann, and R. Eid, Stability preservation in projection-based model order reduction of large scale systems, Eur. J. Control, 18 (2) (2012), 122-132. · Zbl 1302.93056
[108] B. N. Sheehan, TICER: Realizable reduction of extracted RC circuits, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA, USA, pp. 200-203, Nov 1999.
[109] B. N. Sheehan, Realizable reduction of RC networks, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 26 (8) (Aug 2007), 1393-1407.
[110] L. M. Silveira, M. Kamon, I. Elfadel, and J. White, A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA, USA, pp. 288-294, Nov 1996.
[111] L. M. Silveira, M. Kamon, and J. White, Efficient reduced-order modeling of frequency-dependent coupling inductances associated with 3-D interconnect structures, IEEE Trans. Compon. Packaging Manuf. Technol., Part B, 19 (2) (May 1996), 283-288.
[112] P. Singh, J. Seo, D. Blaauw, and D. Sylvester, Self-timed regenerators for high-speed and low-power on-chip global interconnect, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 16 (6) (Jun 2008), 673-677.
[113] S. X. D. Tan and L. He, Advanced Model Order Reduction Techniques in VLSI Design, Cambridge Univ. Press, Cambridge, MA, USA, 2007.
[114] N. P. van der Meijs, Model order reduction of large RC circuits, in W. H. Schilders, H. A. van der Vorstand, and J. Rommes (eds.) Model Order Reduction: Theory, Research Aspects and Applications, Chapter 7, pp. 421-446, Springer, Berlin, Heidelberg, Germany, 2008. · Zbl 1180.78042
[115] L. van Ginneken, Buffer placement in distributed RC-tree networks for minimal Elmore delay, in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 865-868, May 1990.
[116] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design, 2nd ed., Kluwer Academic, Boston, MA, USA, 2003.
[117] Y. Wan and J. Roychowdhury, Operator-based model-order reduction of linear periodically time-varying systems, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Diego, CA, USA, pp. 391-396, Jun. 2005.
[118] B. Yan, S.-D. Tan, L. Zhou, J. Chen, and R. Shen, Decentralized and passive model order reduction of linear networks with massive ports, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 20 (5) (2012), 865-877.
[119] Z. Ye, D. Vasilyev, Z. Zhu, and J. R. Phillips, Sparse implicit projection (SIP) for reduction of general many-terminal networks, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, pp. 736-743, Nov 2008.
[120] Z. Ye, D. Vasilyev, Z. Zhu, and J. R. Phillips, Sparse implicit projection (SIP) for reduction of general many-terminal networks, in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA, USA, pp. 736-743, Nov 2008.
[121] Y. Zhou, E. Gad, M. S. Nakhla, and R. Achar, Structural characterization and efficient implementation techniques for A-stable high-order integration methods, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 31 (1) (Jan 2012), 101-108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.