×

Interacting dark energy from redshift-space galaxy clustering. (English) Zbl 1486.85001


MSC:

85A04 General questions in astronomy and astrophysics
83C56 Dark matter and dark energy
83C50 Electromagnetic fields in general relativity and gravitational theory
78A45 Diffraction, scattering
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
13F60 Cluster algebras
81V60 Mono-, di- and multipole moments (EM and other), gyromagnetic relations
35B20 Perturbations in context of PDEs
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DES Collaboration; Abbott, T. M. C., Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing (2021)
[2] DESI Collaboration; Aghamousa, Amir, The DESI Experiment Part I: Science,Targeting, and Survey Design (2016)
[3] Euclid Collaboration; Blanchard, A., Euclid preparation: VII. Forecast validation for Euclid cosmological probes, Astron. Astrophys., 642, A191 (2020) · doi:10.1051/0004-6361/202038071
[4] EUCLID Collaboration; Laureijs, R., Euclid Definition Study Report (2011)
[5] Spergel, D., Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report (2015)
[6] LSST Dark Energy Science Collaboration; Mandelbaum, Rachel, The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document (2018)
[7] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[8] Anderson, Lauren, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample, Mon. Not. Roy. Astron. Soc., 427, 3435-3467 (2013) · doi:10.1111/j.1365-2966.2012.22066.x
[9] Song, Yong-Seon; Taruya, Atsushi; Linder, Eric; Koyama, Kazuya; Sabiu, Cristiano G.; Zhao, Gong-Bo, Consistent Modified Gravity Analysis of Anisotropic Galaxy Clustering Using BOSS DR11, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.043522
[10] BOSS Collaboration; Beutler, Florian, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Anisotropic galaxy clustering in Fourier-space, Mon. Not. Roy. Astron. Soc., 466, 2242-2260 (2017) · doi:10.1093/mnras/stw3298
[11] Spurio Mancini, A.; Köhlinger, F.; Joachimi, B.; Pettorino, V.; Schäfer, B. M.; Reischke, R., KiDS + GAMA: constraints on horndeski gravity from combined large-scale structure probes, Mon. Not. Roy. Astron. Soc., 490, 2155-2177 (2019) · doi:10.1093/mnras/stz2581
[12] Tröster, Tilman, Cosmology from large-scale structure: Constraining ΛCDM with BOSS, Astron. Astrophys., 633, L10 (2020) · doi:10.1051/0004-6361/201936772
[13] eBOSS Collaboration; Alam, Shadab, Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.083533
[14] KiDS Collaboration; Tröster, Tilman, KiDS-1000 Cosmology: Constraints beyond flat ΛCDM, Astron. Astrophys., 649, A88 (2021) · doi:10.1051/0004-6361/202039805
[15] Caldwell, R. R.; Dave, Rahul; Steinhardt, Paul J., Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett., 80, 1582-1585 (1998) · Zbl 1371.83193 · doi:10.1103/PhysRevLett.80.1582
[16] Amendola, Luca, Coupled quintessence, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.043511
[17] Peebles, P. J. E.; Ratra, Bharat; Hsu, Jong-Ping; Fine, D., The Cosmological Constant and Dark Energy, Rev. Mod. Phys., 75, 559-606 (2003) · Zbl 1205.83082 · doi:10.1103/RevModPhys.75.559
[18] Copeland, Edmund J.; Sami, M.; Tsujikawa, Shinji, Dynamics of dark energy, Int. J. Mod. Phys. D, 15, 1753-1936 (2006) · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[19] Nojiri, Shin’ichi; Odintsov, Sergei D.; Borowiec, Andrzej, Introduction to modified gravity and gravitational alternative for dark energy, eConf, C0602061, 06 (2006) · Zbl 1112.83047 · doi:10.1142/S0219887807001928
[20] Sotiriou, Thomas P.; Faraoni, Valerio, f(R) Theories Of Gravity, Rev. Mod. Phys., 82, 451-497 (2010) · Zbl 1205.83006 · doi:10.1103/RevModPhys.82.451
[21] De Felice, Antonio; Tsujikawa, Shinji, f(R) theories, Living Rev. Rel., 13, 3 (2010) · Zbl 1215.83005 · doi:10.12942/lrr-2010-3
[22] Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos, Modified Gravity and Cosmology, Phys. Rept., 513, 1-189 (2012) · doi:10.1016/j.physrep.2012.01.001
[23] Bertolami, Orfeu; Carrilho, Pedro; Paramos, Jorge, Two-scalar-field model for the interaction of dark energy and dark matter, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.103522
[24] Pourtsidou, A.; Skordis, C.; Copeland, E. J., Models of dark matter coupled to dark energy, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.083505
[25] Guzzo, L., A test of the nature of cosmic acceleration using galaxy redshift distortions, Nature, 451, 541-545 (2008) · doi:10.1038/nature06555
[26] Blake, Chris, The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9, Mon. Not. Roy. Astron. Soc., 415, 2876 (2011) · doi:10.1111/j.1365-2966.2011.18903.x
[27] Reid, Beth A., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering, Mon. Not. Roy. Astron. Soc., 426, 2719 (2012) · doi:10.1111/j.1365-2966.2012.21779.x
[28] BOSS Collaboration; Beutler, Florian, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles, Mon. Not. Roy. Astron. Soc., 443, 1065-1089 (2014) · doi:10.1093/mnras/stu1051
[29] Macaulay, Edward; Wehus, Ingunn Kathrine; Eriksen, Hans Kristian, Lower Growth Rate from Recent Redshift Space Distortion Measurements than Expected from Planck, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.161301
[30] Gil-Marín, Héctor; Percival, Will J.; Verde, Licia; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies, Mon. Not. Roy. Astron. Soc., 465, 1757-1788 (2017) · doi:10.1093/mnras/stw2679
[31] Chisari, Nora Elisa, Modelling baryonic feedback for survey cosmology, Open J. Astrophys., 2, 4 (2019) · doi:10.21105/astro.1905.06082
[32] Markovic, Katarina; Bose, Benjamin; Pourtsidou, Alkistis, Assessing non-linear models for galaxy clustering I: unbiased growth forecasts from multipole expansion, Open J. Astrophys., 2, 13 (2019) · doi:10.21105/astro.1904.11448
[33] Bose, Benjamin; Pourtsidou, Alkistis; Markovič, Katarina; Beutler, Florian, Assessing non-linear models for galaxy clustering II: model validation and forecasts for Stage IV surveys (2019) · doi:10.1093/mnras/staa502
[34] Schneider, Aurel; Stoira, Nicola; Refregier, Alexandre; Weiss, Andreas J.; Knabenhans, Mischa; Stadel, Joachim, Baryonic effects for weak lensing. Part I. Power spectrum and covariance matrix, JCAP, 04 (2020) · doi:10.1088/1475-7516/2020/04/019
[35] Nishimichi, Takahiro; D’Amico, Guido; Ivanov, Mikhail M.; Senatore, Leonardo; Simonović, Marko; Takada, Masahiro, Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.123541
[36] Euclid Collaboration; Martinelli, M., Euclid: Impact of non-linear and baryonic feedback prescriptions on cosmological parameter estimation from weak lensing cosmic shear, Astron. Astrophys., 649, A100 (2021) · doi:10.1051/0004-6361/202039835
[37] Pezzotta, Andrea; Crocce, Martin; Eggemeier, Alexander; Sánchez, Ariel G.; Scoccimarro, Román, Testing one-loop galaxy bias: Cosmological constraints from the power spectrum, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.043531
[38] DES Collaboration; Secco, L. F., Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Modeling Uncertainty (2021)
[39] Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun, Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.063522
[40] Baumann, Daniel; Nicolis, Alberto; Senatore, Leonardo; Zaldarriaga, Matias, Cosmological Non-Linearities as an Effective Fluid, JCAP, 07 (2012) · doi:10.1088/1475-7516/2012/07/051
[41] Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo, The Effective Field Theory of Cosmological Large Scale Structures, JHEP, 09, 082 (2012) · Zbl 1397.83211 · doi:10.1007/JHEP09(2012)082
[42] D’Amico, Guido; Gleyzes, Jérôme; Kokron, Nickolas; Markovic, Katarina; Senatore, Leonardo; Zhang, Pierre, The Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP, 05 (2020) · doi:10.1088/1475-7516/2020/05/005
[43] Ivanov, Mikhail M.; Simonović, Marko; Zaldarriaga, Matias, Cosmological Parameters from the BOSS Galaxy Power Spectrum, JCAP, 05 (2020) · doi:10.1088/1475-7516/2020/05/042
[44] Di Valentino, Eleonora, Snowmass2021 - Letter of interest cosmology intertwined II: The hubble constant tension, Astropart. Phys., 131 (2021) · doi:10.1016/j.astropartphys.2021.102605
[45] Di Valentino, Eleonora, Cosmology intertwined III: fσ_8 and S_8, Astropart. Phys., 131 (2021) · doi:10.1016/j.astropartphys.2021.102604
[46] Di Valentino, Eleonora, Snowmass2021 - Letter of interest cosmology intertwined IV: The age of the universe and its curvature, Astropart. Phys., 131 (2021) · doi:10.1016/j.astropartphys.2021.102607
[47] Verde, L.; Treu, T.; Riess, A. G., Tensions between the Early and the Late Universe, Nature Astron., 3, 891 (2019) · doi:10.1038/s41550-019-0902-0
[48] Knox, Lloyd; Millea, Marius, Hubble constant hunter’s guide, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.043533
[49] Jedamzik, Karsten; Pogosian, Levon; Zhao, Gong-Bo, Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension, Commun. in Phys., 4, 123 (2021) · doi:10.1038/s42005-021-00628-x
[50] Di Valentino, Eleonora; Mena, Olga; Pan, Supriya; Visinelli, Luca; Yang, Weiqiang; Melchiorri, Alessandro, In the realm of the Hubble tension — a review of solutions, Class. Quant. Grav., 38 (2021) · doi:10.1088/1361-6382/ac086d
[51] Perivolaropoulos, Leandros; Skara, Foteini, Challenges for ΛCDM: An update (2021)
[52] DES Collaboration; Abbott, T. M. C., Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.023509
[53] Heymans, Catherine, KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints, Astron. Astrophys., 646, A140 (2021) · doi:10.1051/0004-6361/202039063
[54] Vikhlinin, A., Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints, Astrophys. J., 692, 1060-1074 (2009) · doi:10.1088/0004-637X/692/2/1060
[55] SPT Collaboration; de Haan, T., Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey, Astrophys. J., 832, 95 (2016) · doi:10.3847/0004-637X/832/1/95
[56] Simpson, Fergus; Blake, Chris; Peacock, John A.; Baldry, Ivan; Bland-Hawthorn, Joss; Heavens, Alan, Galaxy and mass assembly: Redshift space distortions from the clipped galaxy field, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.023525
[57] Bean, Rachel; Flanagan, Eanna E.; Laszlo, Istvan; Trodden, Mark, Constraining Interactions in Cosmology’s Dark Sector, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123514
[58] Xia, Jun-Qing, Constraint on coupled dark energy models from observations, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.103514
[59] Amendola, Luca; Pettorino, Valeria; Quercellini, Claudia; Vollmer, Adrian, Testing coupled dark energy with next-generation large-scale observations, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.103008
[60] Gómez-Valent, Adrià; Pettorino, Valeria; Amendola, Luca, Update on coupled dark energy and the H_0 tension, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.123513
[61] Pourtsidou, Alkistis; Tram, Thomas, Reconciling CMB and structure growth measurements with dark energy interactions, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.043518
[62] Skordis, C.; Pourtsidou, A.; Copeland, E. J., Parametrized post-Friedmannian framework for interacting dark energy theories, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.083537
[63] Richarte, Martín G.; Xu, Lixin, Interacting parametrized post-Friedmann method, Gen. Rel. Grav., 48, 39 (2016) · Zbl 1338.83226 · doi:10.1007/s10714-016-2035-4
[64] Simpson, Fergus, Scattering of dark matter and dark energy, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.083505
[65] Baldi, Marco; Simpson, Fergus, Structure formation simulations with momentum exchange: alleviating tensions between high-redshift and low-redshift cosmological probes, Mon. Not. Roy. Astron. Soc., 465, 653-666 (2017) · doi:10.1093/mnras/stw2702
[66] Lesgourgues, Julien; Marques-Tavares, Gustavo; Schmaltz, Martin, Evidence for dark matter interactions in cosmological precision data?, JCAP, 02 (2016) · doi:10.1088/1475-7516/2016/02/037
[67] Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy, Variable sound speed in interacting dark energy models, JCAP, 04 (2018) · Zbl 07458879 · doi:10.1088/1475-7516/2018/04/043
[68] Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis, Modelling Non-Linear Effects of Dark Energy, JCAP, 04 (2018) · doi:10.1088/1475-7516/2018/04/032
[69] Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs, Interacting Dark Sector and Precision Cosmology, JCAP, 01 (2018) · doi:10.1088/1475-7516/2018/01/008
[70] Kase, Ryotaro; Tsujikawa, Shinji, Weak cosmic growth in coupled dark energy with a Lagrangian formulation, Phys. Lett. B, 804 (2020) · Zbl 1435.83063 · doi:10.1016/j.physletb.2020.135400
[71] Chamings, Finlay Noble; Avgoustidis, Anastasios; Copeland, Edmund J.; Green, Anne M.; Pourtsidou, Alkistis, Understanding the suppression of structure formation from dark matter-dark energy momentum coupling, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.043531
[72] Amendola, Luca; Tsujikawa, Shinji, Scaling solutions and weak gravity in dark energy with energy and momentum couplings, JCAP, 06 (2020) · Zbl 1200.85001 · doi:10.1088/1475-7516/2020/06/020
[73] Jiménez, Jose Beltrán; Bettoni, Dario; Figueruelo, David; Teppa Pannia, Florencia Anabella; Tsujikawa, Shinji, Probing elastic interactions in the dark sector and the role of S_8 (2021) · Zbl 1485.85010
[74] Baldi, Marco; Simpson, Fergus, Simulating Momentum Exchange in the Dark Sector, Mon. Not. Roy. Astron. Soc., 449, 2239-2249 (2015) · doi:10.1093/mnras/stv405
[75] Malik, Karim A.; Wands, David, Cosmological perturbations, Phys. Rept., 475, 1-51 (2009) · doi:10.1016/j.physrep.2009.03.001
[76] Jain, Bhuvnesh; Bertschinger, Edmund, Second order power spectrum and nonlinear evolution at high redshift, Astrophys. J., 431, 495 (1994) · doi:10.1086/174502
[77] Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rept., 367, 1-248 (2002) · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[78] McDonald, Patrick; Roy, Arabindo, Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS, JCAP, 08 (2009) · doi:10.1088/1475-7516/2009/08/020
[79] Assassi, Valentin; Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias, Renormalized Halo Bias, JCAP, 08 (2014) · doi:10.1088/1475-7516/2014/08/056
[80] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Large-Scale Galaxy Bias, Phys. Rept., 733, 1-193 (2018) · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[81] Fujita, Tomohiro; Mauerhofer, Valentin; Senatore, Leonardo; Vlah, Zvonimir; Angulo, Raul, Very Massive Tracers and Higher Derivative Biases, JCAP, 01 (2020) · Zbl 1489.83088 · doi:10.1088/1475-7516/2020/01/009
[82] Chan, Kwan Chuen; Scoccimarro, Roman; Sheth, Ravi K., Gravity and Large-Scale Non-local Bias, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.083509
[83] Baldauf, Tobias; Seljak, Uros; Desjacques, Vincent; McDonald, Patrick, Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.083540
[84] Sheth, Ravi K.; Chan, Kwan Chuen; Scoccimarro, Román, Nonlocal Lagrangian bias, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.083002
[85] Saito, Shun; Baldauf, Tobias; Vlah, Zvonimir; Seljak, Uroš; Okumura, Teppei; McDonald, Patrick, Understanding higher-order nonlocal halo bias at large scales by combining the power spectrum with the bispectrum, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.123522
[86] de la Bella, Lucía Fonseca; Regan, Donough; Seery, David; Hotchkiss, Shaun, The matter power spectrum in redshift space using effective field theory, JCAP, 11 (2017) · Zbl 1515.83329 · doi:10.1088/1475-7516/2017/11/039
[87] Chudaykin, Anton; Ivanov, Mikhail M.; Philcox, Oliver H. E.; Simonović, Marko, Nonlinear perturbation theory extension of the Boltzmann code CLASS, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.063533
[88] Perko, Ashley; Senatore, Leonardo; Jennings, Elise; Wechsler, Risa H., Biased Tracers in Redshift Space in the EFT of Large-Scale Structure (2016)
[89] Vlah, Zvonimir; Seljak, Uroš; Chu, Man Yat; Feng, Yu, Perturbation theory, effective field theory, and oscillations in the power spectrum, JCAP, 03 (2016) · doi:10.1088/1475-7516/2016/03/057
[90] Eisenstein, Daniel J.; Hu, Wayne, Baryonic features in the matter transfer function, Astrophys. J., 496, 605 (1998) · doi:10.1086/305424
[91] Schmittfull, Marcel; Simonović, Marko; Assassi, Valentin; Zaldarriaga, Matias, Modeling Biased Tracers at the Field Level, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.043514
[92] Scoccimarro, Roman; Couchman, H. M. P.; Frieman, Joshua A., The Bispectrum as a Signature of Gravitational Instability in Redshift-Space, Astrophys. J., 517, 531-540 (1999) · doi:10.1086/307220
[93] McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.; Blazek, Jonathan A., FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory, JCAP, 09 (2016) · Zbl 1515.83006 · doi:10.1088/1475-7516/2016/09/015
[94] Fang, Xiao; Blazek, Jonathan A.; McEwen, Joseph E.; Hirata, Christopher M., FAST-PT II: an algorithm to calculate convolution integrals of general tensor quantities in cosmological perturbation theory, JCAP, 02 (2017) · Zbl 1515.83006 · doi:10.1088/1475-7516/2017/02/030
[95] Bose, Benjamin; Koyama, Kazuya; Winther, Hans A., Assessing non-linear models for galaxy clustering III: Theoretical accuracy for Stage IV surveys, JCAP, 10 (2019) · Zbl 1515.85009 · doi:10.1088/1475-7516/2019/10/021
[96] Fonseca de la Bella, Lucia; Regan, Donough; Seery, David; Parkinson, David, Impact of bias and redshift-space modelling for the halo power spectrum: Testing the effective field theory of large-scale structure, JCAP, 07 (2020) · Zbl 1492.85012 · doi:10.1088/1475-7516/2020/07/011
[97] Yang, Weiqiang; Pan, Supriya; Di Valentino, Eleonora; Nunes, Rafael C.; Vagnozzi, Sunny; Mota, David F., Tale of stable interacting dark energy, observational signatures, and the H_0 tension, JCAP, 09 (2018) · doi:10.1088/1475-7516/2018/09/019
[98] Howlett, Cullan; Manera, Marc; Percival, Will J., L-PICOLA: A parallel code for fast dark matter simulation, Astron. Comput., 12, 109-126 (2015) · doi:10.1016/j.ascom.2015.07.003
[99] Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo, COLA with scale-dependent growth: applications to screened modified gravity models, JCAP, 08 (2017) · Zbl 1515.83463 · doi:10.1088/1475-7516/2017/08/006
[100] WMAP Collaboration; Hinshaw, G., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl., 208, 19 (2013) · doi:10.1088/0067-0049/208/2/19
[101] Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin; Goodman, Jonathan, emcee: The MCMC Hammer, Publ. Astron. Soc. Pac., 125, 306-312 (2013) · doi:10.1086/670067
[102] Osato, Ken; Nishimichi, Takahiro; Bernardeau, Francis; Taruya, Atsushi, Perturbation theory challenge for cosmological parameters estimation: Matter power spectrum in real space, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.063530
[103] Eggemeier, Alexander; Scoccimarro, Román; Crocce, Martin; Pezzotta, Andrea; Sánchez, Ariel G., Testing one-loop galaxy bias: Power spectrum, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.103530
[104] Lopez Honorez, Laura; Reid, Beth A.; Mena, Olga; Verde, Licia; Jimenez, Raul, Coupled dark matter-dark energy in light of near Universe observations, JCAP, 09 (2010) · doi:10.1088/1475-7516/2010/09/029
[105] Caldera-Cabral, Gabriela; Maartens, Roy; Schaefer, Bjoern Malte, The Growth of Structure in Interacting Dark Energy Models, JCAP, 07 (2009) · doi:10.1088/1475-7516/2009/07/027
[106] Di Valentino, Eleonora; Mena, Olga, A fake Interacting Dark Energy detection?, Mon. Not. Roy. Astron. Soc., 500, L22-L26 (2020) · doi:10.1093/mnrasl/slaa175
[107] Schneider, Aurel; Refregier, Alexandre; Grandis, Sebastian; Eckert, Dominique; Stoira, Nicola; Kacprzak, Tomasz, Baryonic effects for weak lensing. Part II. Combination with X-ray data and extended cosmologies, JCAP, 04 (2020) · doi:10.1088/1475-7516/2020/04/020
[108] Virtanen, Pauli, SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python, Nature Meth., 17, 261 (2020) · doi:10.1038/s41592-019-0686-2
[109] Hunter, John D., Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90-95 (2007) · doi:10.1109/MCSE.2007.55
[110] W. McKinney, Data structures for statistical computing in python, in Proceedings of the 9th Python in Science Conference, S. van der Walt and J. Millman eds., pp. 51-56 (2010) [DOI]. · doi:10.25080/Majora-92bf1922-00a
[111] van der Walt, Stéfan; Colbert, S. Chris; Varoquaux, Gaël, The NumPy Array: A Structure for Efficient Numerical Computation, Comput. Sci. Eng., 13, 22-30 (2011) · doi:10.1109/MCSE.2011.37
[112] Lewis, Antony; Challinor, Anthony; Lasenby, Anthony, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., 538, 473-476 (2000) · doi:10.1086/309179
[113] Lewis, Antony, GetDist: a Python package for analysing Monte Carlo samples (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.