×

Logic of gauge. (English) Zbl 1444.81005

Bernard, Julien (ed.) et al., Weyl and the problem of space. From science to philosophy. Cham: Springer. Stud. Hist. Philos. Sci. (Dordr.) 49, 265-293 (2019).
Summary: The logic of gauge theory is considered by tracing its development from general relativity to Yang-Mills theory, through Weyl’s two gauge theories. A handful of elements – which for want of better terms can be called geometrical justice, matter wave, second clock effect, twice too many energy levels – are enough to produce Weyl’s second theory; and from there, all that’s needed to reach the Yang-Mills formalism is a non-abelian structure group (say \(\mathbb{SU}(N) )\).
For the entire collection see [Zbl 1426.00002].

MSC:

81-03 History of quantum theory
83-03 History of relativity and gravitational theory
70-03 History of mechanics of particles and systems
81P05 General and philosophical questions in quantum theory
00A35 Methodology of mathematics
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
78A25 Electromagnetic theory (general)
81T13 Yang-Mills and other gauge theories in quantum field theory
01A60 History of mathematics in the 20th century
00A79 Physics

Biographic References:

Weyl, Hermann
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Afriat, A. 2009. How Weyl stumbled across electricity while pursuing mathematical justice. Studies in History and Philosophy of Modern Physics 40: 20-25. · Zbl 1228.83003
[2] ———. 2013. Weyl’s gauge argument. Foundations of Physics 43: 699-705. · Zbl 1286.83046
[3] ———. 2015. Electricity, gravity and matter. In Proceedings of science: FFP14 - Fourteenth international symposium, Frontiers of fundamental physics, Marseilles, 15-8 July 2014.
[4] Cao, T. 1997. Conceptual developments of 20th century field theories. Cambridge: Cambridge University Press. · Zbl 0871.01008
[5] Coleman, R. and H. Korté. 2001. Hermann Weyl: Mathematician, physicist, philosopher, pp. 161-388 in Scholz (2001b).
[6] de Broglie, L. 1924. Recherches sur la théorie des quanta. Paris: Thèse. · JFM 51.0729.03
[7] Dirac, P.A.M. 1925. The fundamental equations of quantum mechanics. Proceedings of the Royal society A 109: 642-653. · JFM 51.0729.01
[8] ———. 1928. The quantum theory of the electron. Proceedings of the Royal society A 117: 610-624. · JFM 54.0973.01
[9] ———. 1931. Quantised singularities in the electromagnetic field. Proceedings of the Royal society A 133: 60-72. · JFM 57.1581.06
[10] Eddington, A.S. 1987. Space, time & gravitation. Cambridge University Press. · Zbl 0607.53044
[11] Einstein, A. 1916. Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 49: 769-822. · JFM 46.1293.01
[12] Hawkins, T. 2000. Emergence of the theory of lie groups. Berlin: Springer. · Zbl 0965.01001
[13] Hegel, G. 1816. Wissenschaft der Logik. Nürnberg: Schrag.
[14] Kretschmann, E. 1917. Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie. Annalen der Physik 53: 576-614. · JFM 46.1292.01
[15] Levi-Civita, T. 1917. Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana. Rendiconti del Circolo Matematico di Palermo 42: 173-205. · JFM 46.1125.02
[16] Needham, T. 2000. Visual complex analysis. Oxford: Clarendon Press. · Zbl 0893.30001
[17] Pais, A. 1982. ‘Subtle is the Lord ...’: The science and the life of Albert Einstein. Oxford: Oxford University Press.
[18] Pauli, W. 1979. Wissenschaftlicher Briefwechsel, Band I: 1919-1929. Berlin: Springer.
[19] Penrose, R. 2004. The road to reality: A complete guide to the laws of the universe. London: Jonathan Cape. · Zbl 1188.00007
[20] ———. 2016. Fashion, faith and fantasy in the new physics of the universe. Princeton: Princeton University Press. · Zbl 1346.00057
[21] Penrose, R., and W. Rindler. 1987. Spinors and space-time, volume 1: Two-spinor calculus and relativistic fields. Cambridge: Cambridge University Press. · Zbl 0663.53013
[22] Popper, K. 1934. Logik der Forschung. Berlin: Springer. · Zbl 0010.24202
[23] Ryckman, T. 2003a. Surplus structure from the standpoint of transcendental idealism: The “world geometries” of Weyl and Eddington. Perspectives on Science 11: 76-106. · Zbl 1330.00026
[24] ———. 2003b. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism. In Symmetries in physics: Philosophical reflections, ed. K. Brading and E. Castellani, 61-88. Cambridge University Press (2003).
[25] ———. 2005. The reign of relativity: Philosophy in physics 1915-1925. New York: Oxford University Press.
[26] ———. 2009. Hermann Weyl and “first philosophy”: constituting gauge invariance, pp. 279-298 in Bitbol M., et al. (ed). Constituting objectivity: transcendental perspectives on modern physics, Springer Netherlands.
[27] Scholz, E. 1994. Hermann Weyl’s contributions to geometry in the years 1918 to 1923, pp. 203-230 in Dauben, J., et al. (ed.). The intersection of history and mathematics. Basel: Birkhäuser. · Zbl 0821.01020
[28] ———. 1995. Hermann Weyl’s “Purely infinitesimal geometry”. In Proceedings of the international congress of mathematicians, August 3-11, 1994 Zürich, ed. S.D. Chatterji, 1592-1603. Basel: Birkhäuser. · Zbl 0840.01021
[29] ———. 2001a. Weyls Infinitesimalgeometrie, 1917-1925, pp. 48-104 in Scholz (2001b).
[30] ———. ed. 2001b. Hermann Weyl’s Raum-Zeit-Materie and a general introduction to his scientific work. Basel: Birkhäuser.
[31] ———. 2004. Hermann Weyl’s analysis of the “problem of space” and the origin of gauge structures. Science in Context 17: 165-197. · Zbl 1181.01038
[32] ———. 2005. Local spinor structures in V. Fock’s and H. Weyl’s work on the Dirac equation (1929), pp. 284-301 in Flament, D. et al. (ed) Géométrie au vingtième siècle, 1930-2000. Paris: Hermann.
[33] ———. 2006. Introducing groups into quantum theory. Historia Mathematica 33: 440-490. · Zbl 1130.01011
[34] ———. (2011a) “Mathematische Physik bei Hermann Weyl – zwischen „Hegelscher Physik” und „symbolischer Konstruktion der Wirklichkeit“” pp. 183-212 in K.-H. Schlote and M. Schneider Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th century, Harri Deutsch Verlag, Frankfurt.
[35] ———. 2011b. H. Weyl’s and E. Cartan’s proposals for infinitesimal geometry in the early 1920s. Boletim da Sociedada portuguesa de matemàtica, Numero especial A, 225-245.
[36] Schrödinger, E. 1926. Quantisierung als Eigenwertproblem (erste Mitteilung). Annalen der Physik 79: 361-376. · JFM 52.0965.08
[37] Seelig, K. 1960. Albert Einstein. Zurich: Europa Verlag.
[38] Sigurdsson, S. 2001. Journeys in spacetime, pp. 15-47 in Scholz (2001b).
[39] Smirnov, V. 1961. Linear algebra and group theory. New York: McGraw-Hill.
[40] Straumann, N. 1987. Zum Ursprung der Eichtheorien bei Hermann Weyl. Physikalische Blätter 43: 414-421.
[41] Teller, P. 2000. The gauge argument. Philosophy of Science 67: S466-S481.
[42] Vizgin, V. 1984. Unified field theories. Basel: Birkhäuser.
[43] Weyl, H. 1918. Gravitation und Elektrizität, pp. 147-159 in Das Relativitätsprinzip, Teubner, Stuttgart, 1990. · JFM 46.1300.01
[44] ———. 1921. Feld und Materie. Annalen der Physik 65: 541-563. · JFM 48.1027.01
[45] ———. 1926. Philosophie der Mathematik und Naturwissenschaft. Munich: Oldenbourg.
[46] ———. 1928. Gruppentheorie und Quantenmechanik. Leipzig: Hirzel.
[47] ———. 1929a. Gravitation and the electron. Proceedings of the National academy of sciences, USA 15: 323-334. · JFM 55.0513.05
[48] ———. 1929b. Elektron und Gravitation. Zeitschrift für Physik 56: 330-352. · JFM 55.0513.04
[49] ———. 1929c. Gravitation and the electron. The Rice Institute Pamphlet 16: 280-295.
[50] ———. 1931a. Geometrie und Physik. Die Naturwissenschaften 19: 49-58. · Zbl 0001.03303
[51] ———. 1931b. Gruppentheorie und Quantenmechanik. 2nd ed. Leipzig: Hirzel. · JFM 57.1579.01
[52] ———. 1939. The classical groups: Their invariants and representations. Princeton: Princeton University Press. · Zbl 0020.20601
[53] ———. 1988. Raum Zeit Materie. Berlin: Springer.
[54] ———. 2008. Einführung in die Funktionentheorie. Basel: Birkhäuser.
[55] Yang, C. · Zbl 1378.81075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.