Weyl correspondence for a charged particle in the field of a magnetic monopole. (English. Russian original) Zbl 1346.81055

Theor. Math. Phys. 187, No. 2, 782-795 (2016); translation from Teor. Mat. Fiz. 187, No. 2, 383-398 (2016).
Summary: We construct a generalized Weyl correspondence for an electrically charged particle in the field of the Dirac magnetic monopole. Our starting points are a global Lagrangian description of this system as a constrained system with \(U(1)\) gauge symmetry given in terms of the fiber bundle theory and a reduction of the presymplectic structure arising on the constraint surface. In contrast to the recently proposed quantization scheme based on using a quaternionic Hilbert module, the quantum operators corresponding to classical observables in our construction act in the complex Hilbert space of \(U(1)\)-equivariant functions introduced by Greub and Petry. These functions are defined on the total space of a fiber bundle that is topologically equivalent to the Hopf fibration. [Dedicated to Igor Viktorovich Tyutin on the occasion of his 75th birthday]


81S10 Geometry and quantization, symplectic methods
53D55 Deformation quantization, star products
78A97 Mathematically heuristic optics and electromagnetic theory (must also be assigned at least one other classification number in Section 78-XX)
78A35 Motion of charged particles
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
53D12 Lagrangian submanifolds; Maslov index
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)

Biographic References:

Tyutin, Igor Viktorovich
Full Text: DOI


[1] Dirac, P. A. M., No article title, Proc. R. Soc. London Ser. A, 133, 60-72, (1931) · JFM 57.1581.06
[2] Dirac, P. A. M., No article title, Phys. Rev., 74, 817-830, (1948) · Zbl 0034.27604
[3] I. V. Tyutin, “Scattering of an electron on a solenoid [in Russian],” Preprint FIAN No. 27, Lebedev Phys. Inst., Moscow (1974); arXiv:0801.2167v2 [quant-ph] (2008).
[4] Wu, T. T.; Yang, C. N., No article title, Phys. Rev. D, 12, 3845-3857, (1975)
[5] Wu, T. T.; Yang, C. N., No article title, Nucl. Phys. B, 107, 365-380, (1976)
[6] Greub, W.; Petry, H. R., No article title, J. Math. Phys, 16, 1347-1351, (1975)
[7] Hopf, H., No article title, Math. Ann., 104, 637-665, (1931) · Zbl 0001.40703
[8] Urbantke, H. K., No article title, J. Geom. Phys., 46, 125-150, (2003) · Zbl 1017.81003
[9] B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications [in Russian], Nauka, Moscow (1986); English transl.: B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov (Grad. Texts Math., Vols. 93 and 104), Springer, New York (1992). · Zbl 0601.53001
[10] Daniel, M.; Viallet, C. M., No article title, Rev. Modern Phys., 52, 175-197, (1980)
[11] Milton, K. A., No article title, Rep. Progr. Phys., 69, 1637-1711, (2006)
[12] Carinena, J. F.; Gracia-Bondia, J. M.; Lizzi, F.; Marmo, G.; Vitale, P., No article title, Phys. Lett. A, 374, 3614-3618, (2010) · Zbl 1238.81150
[13] G. G. Emch and A. Z. Jadczyk, “On quaternions and monopoles,” arXiv:quant-ph/9803002v1 (1998). · Zbl 0986.81035
[14] Balachandran, A. P.; Marmo, G.; Skagerstam, B. S.; Stern, A., No article title, Nucl. Phys. B, 162, 385-396, (1980)
[15] Solov’ev, M. A., No article title, JETP Lett., 39, 714-716, (1984)
[16] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems (Texts Appl. Math., Vol. 17), Springer, New York (1999). · Zbl 0933.70003
[17] Kustaanheimo, P.; Stiefel, E., No article title, J. Reine Angew. Math., 218, 204-219, (1965)
[18] S. Bates and A. Weinstein, Lectures on the Geometry of Quatization (Berkeley Math. Lect. Notes., Vol. 8), Amer. Math. Soc., Providence, R. I. (1997). · Zbl 1049.53061
[19] G. B. Folland, Harmonic Analysis in Phase Space (Annals Math. Studies, Vol. 122), Princeton Univ. Press, Princeton, N. J. (1989). · Zbl 0682.43001
[20] Petry, H.-R., Electron scattering on magnetic monopoles, Differential Geometrical Methods in Mathematical Physics, 836, 406-419, (1980)
[21] Soloviev, M. A., No article title, Theor. Math. Phys., 181, 1612-1637, (2014) · Zbl 1317.81177
[22] Gracia-Bondía, J. M.; Várilly, J. C., No article title, J. Math. Phys., 29, 869-879, (1988) · Zbl 0652.46026
[23] Gayral, V.; Gracia-Bondía, J. M.; Iochum, B.; Schücker, T.; Várilly, J. C., No article title, Commun. Math. Phys., 246, 569-623, (2004)
[24] Trautman, A., No article title, Internat. J. Theoret. Phys., 16, 561-565, (1977)
[25] Solov’ev, M. A., No article title, JETP Lett., 35, 669-671, (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.