Smolkin, Eugene; Smirnov, Yury Nonlinear propagation of leaky TE-polarized electromagnetic waves in a metamaterial Goubau line. (English) Zbl 1483.78002 Math. Model. Anal. 26, No. 3, 372-382 (2021). MSC: 78A40 34L30 45G10 PDF BibTeX XML Cite \textit{E. Smolkin} and \textit{Y. Smirnov}, Math. Model. Anal. 26, No. 3, 372--382 (2021; Zbl 1483.78002) Full Text: DOI OpenURL
Smirnov, Yu. G. Integral dispersion equation method in the problem on nonlinear waves in a circular waveguide. (English. Russian original) Zbl 1479.78022 Differ. Equ. 57, No. 10, 1333-1340 (2021); translation from Differ. Uravn. 57, No. 10, 1359-1366 (2021). MSC: 78A60 78A50 78A40 35P30 35Q61 PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Differ. Equ. 57, No. 10, 1333--1340 (2021; Zbl 1479.78022); translation from Differ. Uravn. 57, No. 10, 1359--1366 (2021) Full Text: DOI OpenURL
Smirnov, Yury; Smolkin, Eugene Nonlinear propagation of coupled surface TE and leaky TM electromagnetic waves. (English) Zbl 07420058 Appl. Anal. 100, No. 14, 3050-3064 (2021). MSC: 47J10 78A60 PDF BibTeX XML Cite \textit{Y. Smirnov} and \textit{E. Smolkin}, Appl. Anal. 100, No. 14, 3050--3064 (2021; Zbl 07420058) Full Text: DOI OpenURL
Smirnov, Yu. G.; Smol’kin, E. Yu.; Snegur, M. O. Numerical study of propagation of nonlinear coupled surface and leaky electromagnetic waves in a circular cylindrical metal-dielectric waveguide. (English. Russian original) Zbl 1478.78066 Comput. Math. Math. Phys. 61, No. 8, 1353-1363 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 8, 1378-1389 (2021). MSC: 78A60 78A50 78A40 78A25 35Q61 34B15 34L16 65L15 65L10 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} et al., Comput. Math. Math. Phys. 61, No. 8, 1353--1363 (2021; Zbl 1478.78066); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 8, 1378--1389 (2021) Full Text: DOI OpenURL
Smirnov, Yury On the completeness of normal waves in an inhomogeneous partially shielded dielectric layer. (English) Zbl 1469.78003 Lobachevskii J. Math. 42, No. 6, 1445-1452 (2021). MSC: 78A40 35P99 35A01 35Q61 PDF BibTeX XML Cite \textit{Y. Smirnov}, Lobachevskii J. Math. 42, No. 6, 1445--1452 (2021; Zbl 1469.78003) Full Text: DOI OpenURL
Samokhin, A. B.; Smirnov, Yu. G. Uniqueness and existence theorems for the problems of electromagnetic-wave scattering by three-dimensional anisotropic bodies in differential and integral formulations. (English. Russian original) Zbl 1462.35379 Comput. Math. Math. Phys. 61, No. 1, 80-89 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 1, 85-94 (2021). MSC: 35Q60 78A45 78A25 45E05 45K05 35A01 35A02 35J05 35R09 PDF BibTeX XML Cite \textit{A. B. Samokhin} and \textit{Yu. G. Smirnov}, Comput. Math. Math. Phys. 61, No. 1, 80--89 (2021; Zbl 1462.35379); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 1, 85--94 (2021) Full Text: DOI OpenURL
Smolkin, Eugene; Smirnov, Yury Mathematical theory of normal waves in an open metal-dielectric regular waveguide of arbitrary cross section. (English) Zbl 1476.78009 Math. Model. Anal. 25, No. 3, 391-408 (2020). MSC: 78A50 35A08 35P30 35Q60 PDF BibTeX XML Cite \textit{E. Smolkin} and \textit{Y. Smirnov}, Math. Model. Anal. 25, No. 3, 391--408 (2020; Zbl 1476.78009) Full Text: DOI OpenURL
Smirnov, Yu. G.; Smolkin, E. Yu. On the existence of an infinite number of leaky complex waves in a dielectric layer. (English. Russian original) Zbl 1478.78065 Dokl. Math. 101, No. 1, 53-56 (2020); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 490, 63-66 (2020). MSC: 78A60 78A40 35A01 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{E. Yu. Smolkin}, Dokl. Math. 101, No. 1, 53--56 (2020; Zbl 1478.78065); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 490, 63--66 (2020) Full Text: DOI OpenURL
Smirnov, Yu. G. Integral dispersion equation method for nonlinear eigenvalue problems. (English. Russian original) Zbl 1452.78025 Differ. Equ. 56, No. 10, 1298-1305 (2020); translation from Differ. Uravn. 56, No. 10, 1331-1338 (2020). MSC: 78A60 78A40 78M35 34B09 34L20 PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Differ. Equ. 56, No. 10, 1298--1305 (2020; Zbl 1452.78025); translation from Differ. Uravn. 56, No. 10, 1331--1338 (2020) Full Text: DOI OpenURL
Smirnov, Yu.; Smolkin, E.; Snegur, M. Mathematical theory of normal waves in an anisotropic rod. (English) Zbl 1450.78008 Lobachevskii J. Math. 41, No. 7, 1404-1415 (2020). MSC: 78A50 78A40 78A25 78M30 65N25 35P15 35Q60 PDF BibTeX XML Cite \textit{Yu. Smirnov} et al., Lobachevskii J. Math. 41, No. 7, 1404--1415 (2020; Zbl 1450.78008) Full Text: DOI OpenURL
Smirnov, Yu.; Smolkin, E. Complex waves in dielectric layer. (English) Zbl 1450.35247 Lobachevskii J. Math. 41, No. 7, 1396-1403 (2020). MSC: 35Q60 78A40 78A25 PDF BibTeX XML Cite \textit{Yu. Smirnov} and \textit{E. Smolkin}, Lobachevskii J. Math. 41, No. 7, 1396--1403 (2020; Zbl 1450.35247) Full Text: DOI OpenURL
Smirnov, Yury; Smolkin, Eugene; Kurseeva, Valery Diffraction of TE polarized electromagnetic waves by a nonlinear layer: saturated and Kerr nonlinearities. (English) Zbl 1451.78042 Appl. Anal. 99, No. 15, 2692-2706 (2020). MSC: 78A60 78A40 PDF BibTeX XML Cite \textit{Y. Smirnov} et al., Appl. Anal. 99, No. 15, 2692--2706 (2020; Zbl 1451.78042) Full Text: DOI OpenURL
Ilyinsky, A. S.; Smirnov, Yu. G. Solvability of the integro-differential equation in the problem of wave diffraction on a junction of rectangular waveguides. (English. Russian original) Zbl 1448.35497 Differ. Equ. 56, No. 8, 1041-1049 (2020); translation from Differ. Uravn. 56, No. 8, 1065-1072 (2020). MSC: 35Q61 78A45 78A50 35R09 45K05 35A01 35S15 PDF BibTeX XML Cite \textit{A. S. Ilyinsky} and \textit{Yu. G. Smirnov}, Differ. Equ. 56, No. 8, 1041--1049 (2020; Zbl 1448.35497); translation from Differ. Uravn. 56, No. 8, 1065--1072 (2020) Full Text: DOI OpenURL
Smirnov, Yury; Smolkin, Eugene Eigenwaves in a lossy metal-dielectric waveguide. (English) Zbl 1433.78032 Appl. Anal. 99, No. 1, 1-12 (2020). MSC: 78M30 47A10 78A50 35P10 PDF BibTeX XML Cite \textit{Y. Smirnov} and \textit{E. Smolkin}, Appl. Anal. 99, No. 1, 1--12 (2020; Zbl 1433.78032) Full Text: DOI OpenURL
Shestopalov, Yury; Smolkin, Eugene; Smirnov, Yury On the existence of the nonlinear leaky TE-polarized waves in a metal-dielectric cylindrical waveguide. (English) Zbl 07222224 Wave Motion 91, Article ID 102378, 11 p. (2019). MSC: 78A60 34B15 34L16 PDF BibTeX XML Cite \textit{Y. Shestopalov} et al., Wave Motion 91, Article ID 102378, 11 p. (2019; Zbl 07222224) Full Text: DOI OpenURL
Smirnov, Yury; Smolkin, Eugene Mathematical theory of normal waves in radially inhomogenous dielectric rod. (English) Zbl 1428.78022 Lobachevskii J. Math. 40, No. 10, 1711-1724 (2019). MSC: 78A50 78A40 74K10 74F15 PDF BibTeX XML Cite \textit{Y. Smirnov} and \textit{E. Smolkin}, Lobachevskii J. Math. 40, No. 10, 1711--1724 (2019; Zbl 1428.78022) Full Text: DOI OpenURL
Kurseeva, V. Yu.; Smirnov, Yu. G. Problem of coupled electromagnetic TE-TE wave propagation in a layer filled with nonlinear medium with saturation. (English) Zbl 1429.35183 Lobachevskii J. Math. 40, No. 10, 1673-1684 (2019). MSC: 35Q61 78A40 PDF BibTeX XML Cite \textit{V. Yu. Kurseeva} and \textit{Yu. G. Smirnov}, Lobachevskii J. Math. 40, No. 10, 1673--1684 (2019; Zbl 1429.35183) Full Text: DOI OpenURL
Smirnov, Yu. G.; Smol’kin, E. Yu. Existence of an infinite spectrum of damped leaky TE waves in an open inhomogeneous cylindrical metal-dielectric waveguide. (English. Russian original) Zbl 1427.78012 Differ. Equ. 55, No. 9, 1125-1133 (2019); translation from Differ. Uravn. 55, No. 9, 1171-1178 (2019). MSC: 78A50 35Q60 35P10 78A40 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{E. Yu. Smol'kin}, Differ. Equ. 55, No. 9, 1125--1133 (2019; Zbl 1427.78012); translation from Differ. Uravn. 55, No. 9, 1171--1178 (2019) Full Text: DOI OpenURL
Kurseeva, V. Yu.; Smirnov, Yu. G.; Smolkin, E. Yu. On the solvability of the problem of electromagnetic wave diffraction by a layer filled with a nonlinear medium. (English. Russian original) Zbl 1428.78026 Comput. Math. Math. Phys. 59, No. 4, 644-658 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 4, 684-698 (2019). MSC: 78A60 78A45 35A02 35Q60 PDF BibTeX XML Cite \textit{V. Yu. Kurseeva} et al., Comput. Math. Math. Phys. 59, No. 4, 644--658 (2019; Zbl 1428.78026); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 4, 684--698 (2019) Full Text: DOI OpenURL
Smirnov, Yu. G.; Tsupak, A. A. On the uniqueness of a solution to an inverse problem of scattering by an inhomogeneous solid with a piecewise Hölder refractive index in a special function class. (English. Russian original) Zbl 1420.35473 Dokl. Math. 99, No. 2, 201-203 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 485, No. 5, 545-547 (2019). Reviewer: Tommi Brander (Trondheim) MSC: 35R30 78A46 35C15 35Q60 35J05 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{A. A. Tsupak}, Dokl. Math. 99, No. 2, 201--203 (2019; Zbl 1420.35473); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 485, No. 5, 545--547 (2019) Full Text: DOI OpenURL
Smirnov, Yury; Smolkin, Eugene; Kurseeva, Valery The new type of non-polarized symmetric electromagnetic waves in planar nonlinear waveguide. (English) Zbl 07024352 Appl. Anal. 98, No. 3, 483-498 (2019). MSC: 47J10 78A60 PDF BibTeX XML Cite \textit{Y. Smirnov} et al., Appl. Anal. 98, No. 3, 483--498 (2019; Zbl 07024352) Full Text: DOI OpenURL
Smirnov, Yury; Smolkin, Eugene On the existence of non-polarized azimuthal-symmetric electromagnetic waves in circular dielectric waveguide filled with nonlinear isotropic homogeneous medium. (English) Zbl 07213352 Wave Motion 77, 77-90 (2018). MSC: 47J10 78A60 PDF BibTeX XML Cite \textit{Y. Smirnov} and \textit{E. Smolkin}, Wave Motion 77, 77--90 (2018; Zbl 07213352) Full Text: DOI OpenURL
Smirnov, Yu. G.; Smolkin, E. Yu.; Snegur, M. O. Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization. (English. Russian original) Zbl 1416.78015 Comput. Math. Math. Phys. 58, No. 11, 1887-1901 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 11, 1955-1970 (2018). MSC: 78A50 78A40 35Q61 35P99 47A75 78M10 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} et al., Comput. Math. Math. Phys. 58, No. 11, 1887--1901 (2018; Zbl 1416.78015); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 11, 1955--1970 (2018) Full Text: DOI OpenURL
Smirnov, Yu. G.; Medvedik, M. Yu.; Moskaleva, M. A. Two-step method for permittivity determination of an inhomogeneous body placed in a rectangular waveguide. (English) Zbl 1406.78015 Lobachevskii J. Math. 39, No. 8, 1140-1147 (2018). MSC: 78A50 78A46 78A45 35R09 45K05 65R20 15A72 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} et al., Lobachevskii J. Math. 39, No. 8, 1140--1147 (2018; Zbl 1406.78015) Full Text: DOI OpenURL
Smirnov, Yu. G.; Smolkin, E. Yu. Eigenwaves in Sommerfeld-Goubau line: spectrum. (English) Zbl 1483.35240 Lobachevskii J. Math. 39, No. 8, 1130-1139 (2018). MSC: 35Q60 35P05 78A50 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{E. Yu. Smolkin}, Lobachevskii J. Math. 39, No. 8, 1130--1139 (2018; Zbl 1483.35240) Full Text: DOI OpenURL
Smirnov, Yu. G.; Smol’kin, E. Yu. Operator function method in the problem of normal waves in an inhomogeneous waveguide. (English. Russian original) Zbl 1414.78010 Differ. Equ. 54, No. 9, 1168-1179 (2018); translation from Differ. Uravn. 54, No. 9, 1196-1206 (2018). Reviewer: Vladimir Čadež (Beograd) MSC: 78A50 78A40 78M22 35A15 35P10 47A75 15A18 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{E. Yu. Smol'kin}, Differ. Equ. 54, No. 9, 1168--1179 (2018; Zbl 1414.78010); translation from Differ. Uravn. 54, No. 9, 1196--1206 (2018) Full Text: DOI OpenURL
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A. Two-step method for solving inverse problem of diffraction by an inhomogenous body. (English) Zbl 1402.78013 Beilina, L. (ed.) et al., Nonlinear and inverse problems in electromagnetics, PIERS 2017, St. Petersburg, Russia, May 22–25, 2017. Cham: Springer (ISBN 978-3-319-94059-5/hbk; 978-3-319-94060-1/ebook). Springer Proceedings in Mathematics & Statistics 243, 83-92 (2018). MSC: 78A46 78A45 45B05 45Q05 35J05 78M25 65R20 PDF BibTeX XML Cite \textit{M. Yu. Medvedik} et al., Springer Proc. Math. Stat. 243, 83--92 (2018; Zbl 1402.78013) Full Text: DOI OpenURL
Angermann, Lutz; Shestopalov, Yu. V.; Smirnov, Yu. G.; Yatsyk, Vasyl V. A nonlinear multiparameter EV problem. (English) Zbl 1402.78015 Beilina, L. (ed.) et al., Nonlinear and inverse problems in electromagnetics, PIERS 2017, St. Petersburg, Russia, May 22–25, 2017. Cham: Springer (ISBN 978-3-319-94059-5/hbk; 978-3-319-94060-1/ebook). Springer Proceedings in Mathematics & Statistics 243, 55-70 (2018). MSC: 78A50 78A40 65R20 34L16 45C05 PDF BibTeX XML Cite \textit{L. Angermann} et al., Springer Proc. Math. Stat. 243, 55--70 (2018; Zbl 1402.78015) Full Text: DOI OpenURL
Smirnov, Yu. G.; Smolkin, E.; Kurseeva, V. Diffraction of TE polarized electromagnetic waves by a layer with a nonlinear medium. (English) Zbl 1402.78009 Beilina, L. (ed.) et al., Nonlinear and inverse problems in electromagnetics, PIERS 2017, St. Petersburg, Russia, May 22–25, 2017. Cham: Springer (ISBN 978-3-319-94059-5/hbk; 978-3-319-94060-1/ebook). Springer Proceedings in Mathematics & Statistics 243, 39-53 (2018). MSC: 78A25 78A45 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} et al., Springer Proc. Math. Stat. 243, 39--53 (2018; Zbl 1402.78009) Full Text: DOI OpenURL
Derevyanchuk, E. D.; Shutkov, A. S.; Smirnov, Yu. G. Synthesis problem and mathematical modeling of multilayered absorbing coating. (English) Zbl 1402.78018 Beilina, L. (ed.) et al., Nonlinear and inverse problems in electromagnetics, PIERS 2017, St. Petersburg, Russia, May 22–25, 2017. Cham: Springer (ISBN 978-3-319-94059-5/hbk; 978-3-319-94060-1/ebook). Springer Proceedings in Mathematics & Statistics 243, 19-27 (2018). MSC: 78A50 78M50 78A48 35Q60 35R30 PDF BibTeX XML Cite \textit{E. D. Derevyanchuk} et al., Springer Proc. Math. Stat. 243, 19--27 (2018; Zbl 1402.78018) Full Text: DOI OpenURL
Smirnov, Yury; Tsupak, Aleksey A. Investigation of electromagnetic wave diffraction from an inhomogeneous partially shielded solid. (English) Zbl 1394.35490 Appl. Anal. 97, No. 11, 1881-1895 (2018). MSC: 35Q61 78A45 31B10 35S05 35R09 35A01 35A02 65N30 PDF BibTeX XML Cite \textit{Y. Smirnov} and \textit{A. A. Tsupak}, Appl. Anal. 97, No. 11, 1881--1895 (2018; Zbl 1394.35490) Full Text: DOI OpenURL
Smirnov, Yu. G.; Smolkin, E. Yu. Investigation of the spectrum of the problem of normal waves in a closed regular inhomogeneous dielectric waveguide of arbitrary cross section. (English. Russian original) Zbl 1397.78043 Dokl. Math. 97, No. 1, 86-89 (2018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 478, No. 6, 627-630 (2018). Reviewer: Teodora-Liliana Rădulescu (Craiova) MSC: 78A50 78A40 35P10 78M30 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{E. Yu. Smolkin}, Dokl. Math. 97, No. 1, 86--89 (2018; Zbl 1397.78043); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 478, No. 6, 627--630 (2018) Full Text: DOI OpenURL
Smirnov, Yury G.; Valovik, Dmitry V. Nonlinear coupled wave propagation in a \(n\)-dimensional layer. (English) Zbl 1411.78006 Appl. Math. Comput. 294, 146-156 (2017). MSC: 78A40 34L30 78A60 PDF BibTeX XML Cite \textit{Y. G. Smirnov} and \textit{D. V. Valovik}, Appl. Math. Comput. 294, 146--156 (2017; Zbl 1411.78006) Full Text: DOI OpenURL
Kurseeva, V. Yu.; Smirnov, Yu. G. On the existence of infinitely many eigenvalues in a nonlinear Sturm-Liouville problem arising in the theory of waveguides. (English. Russian original) Zbl 1384.78007 Differ. Equ. 53, No. 11, 1419-1427 (2017); translation from Differ. Uravn. 53, No. 11, 1453-1460 (2017). MSC: 78A50 78A40 35Q61 34B24 34B09 PDF BibTeX XML Cite \textit{V. Yu. Kurseeva} and \textit{Yu. G. Smirnov}, Differ. Equ. 53, No. 11, 1419--1427 (2017; Zbl 1384.78007); translation from Differ. Uravn. 53, No. 11, 1453--1460 (2017) Full Text: DOI OpenURL
Smirnov, Yu. G.; Smolkin, E. Yu. Discreteness of the spectrum in the problem on normal waves in an open inhomogeneous waveguide. (English. Russian original) Zbl 1384.78008 Differ. Equ. 53, No. 10, 1262-1273 (2017); translation from Differ. Uravn. 53, No. 10, 1298-1308 (2017). MSC: 78A50 78A40 35Q61 35A15 35P99 47A75 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{E. Yu. Smolkin}, Differ. Equ. 53, No. 10, 1262--1273 (2017; Zbl 1384.78008); translation from Differ. Uravn. 53, No. 10, 1298--1308 (2017) Full Text: DOI OpenURL
Smirnov, Yu. G.; Tsupak, A. A. On the unique existence of the classical solution to the problem of electromagnetic wave diffraction by an inhomogeneous lossless dielectric body. (English. Russian original) Zbl 1379.78010 Comput. Math. Math. Phys. 57, No. 4, 698-705 (2017); translation from Zh. Vychisl. Mat. Mat. Fiz. 57, No. 4, 702-709 (2017). MSC: 78A45 35Q61 35A02 35R05 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{A. A. Tsupak}, Comput. Math. Math. Phys. 57, No. 4, 698--705 (2017; Zbl 1379.78010); translation from Zh. Vychisl. Mat. Mat. Fiz. 57, No. 4, 702--709 (2017) Full Text: DOI OpenURL
Smirnov, Yu. G.; Tsupak, A. A. Existence and uniqueness theorems in electromagnetic diffraction on systems of lossless dielectrics and perfectly conducting screens. (English) Zbl 1367.31008 Appl. Anal. 96, No. 8, 1326-1341 (2017). MSC: 31B10 35A02 35Q61 35S15 78A45 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{A. A. Tsupak}, Appl. Anal. 96, No. 8, 1326--1341 (2017; Zbl 1367.31008) Full Text: DOI OpenURL
Smirnov, Yu. G.; Medvedik, M. Yu.; Tsupak, A. A.; Moskaleva, M. A. The problem of diffraction of acoustic waves on a system of bodies, screens and antennas. (Russian. English summary) Zbl 1374.78023 Mat. Model. 29, No. 1, 109-118 (2017). Reviewer: Sergei Georgievich Zhuravlev (Moskva) MSC: 78A35 76Q05 78A45 78A50 35J05 65M60 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} et al., Mat. Model. 29, No. 1, 109--118 (2017; Zbl 1374.78023) Full Text: MNR OpenURL
Smirnov, Yu. G.; Tsupak, A. A.; Valovik, D. V. On the volume singular integro-differential equation approach for the electromagnetic diffraction problem. (English) Zbl 1360.35267 Appl. Anal. 96, No. 2, 173-189 (2017). MSC: 35Q61 78A45 31B10 35S15 35R09 45K05 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} et al., Appl. Anal. 96, No. 2, 173--189 (2017; Zbl 1360.35267) Full Text: DOI OpenURL
Smirnov, Yu. G. On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation. (English. Russian original) Zbl 1364.35353 Comput. Math. Math. Phys. 56, No. 9, 1631-1640 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 9, 1657-1666 (2016). MSC: 35Q60 78A45 35R09 35B65 78A40 PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Comput. Math. Math. Phys. 56, No. 9, 1631--1640 (2016; Zbl 1364.35353); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 9, 1657--1666 (2016) Full Text: DOI OpenURL
Smirnov, Yu. G.; Tsupak, A. A. On the Fredholm property of the electric field equation in the vector diffraction problem for a partially screened solid. (English. Russian original) Zbl 1366.78016 Differ. Equ. 52, No. 9, 1199-1208 (2016); translation from Differ. Uravn. 52, No. 9, 1242-1251 (2016). Reviewer: David Kapanadze (Tbilisi) MSC: 78A45 35Q61 47G20 45K05 35R09 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{A. A. Tsupak}, Differ. Equ. 52, No. 9, 1199--1208 (2016; Zbl 1366.78016); translation from Differ. Uravn. 52, No. 9, 1242--1251 (2016) Full Text: DOI OpenURL
Smirnov, Yu. G.; Valovik, D. V. On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell’s equations with cubic nonlinearity. (English) Zbl 1353.78020 J. Math. Phys. 57, No. 10, 103504, 15 p. (2016). MSC: 78A60 78A40 35Q61 35Q60 35G50 35B40 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{D. V. Valovik}, J. Math. Phys. 57, No. 10, 103504, 15 p. (2016; Zbl 1353.78020) Full Text: DOI OpenURL
Smirnov, Y. G.; Tsupak, A. A. Integrodifferential equations of the vector problem of electromagnetic wave diffraction by a system of nonintersecting screens and inhomogeneous bodies. (English) Zbl 1342.35371 Adv. Math. Phys. 2015, Article ID 945965, 6 p. (2015). MSC: 35Q61 78A45 35R05 35S15 PDF BibTeX XML Cite \textit{Y. G. Smirnov} and \textit{A. A. Tsupak}, Adv. Math. Phys. 2015, Article ID 945965, 6 p. (2015; Zbl 1342.35371) Full Text: DOI OpenURL
Smirnov, Yu. G. Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides. (English. Russian original) Zbl 1322.78013 Comput. Math. Math. Phys. 55, No. 3, 461-469 (2015); translation from Zh. Vychisl. Mat. Mat. Fiz. 55, No. 3, 460-468 (2015). MSC: 78A50 78A40 35Q60 35P15 PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Comput. Math. Math. Phys. 55, No. 3, 461--469 (2015; Zbl 1322.78013); translation from Zh. Vychisl. Mat. Mat. Fiz. 55, No. 3, 460--468 (2015) Full Text: DOI OpenURL
Smirnov, Yuri G.; Shestopalov, Yuri V.; Derevyanchuk, Ekaterina D. Solution to the inverse problem of reconstructing permittivity of an \(n\)-sectional diaphragm in a rectangular waveguide. (English) Zbl 1321.78009 Makhlouf, Abdenacer (ed.) et al., Algebra, geometry and mathematical physics. AGMP, Mulhouse, France, October 24-26, 2011. Proceedings. Berlin: Springer (ISBN 978-3-642-55360-8/hbk; 978-3-642-55361-5/ebook). Springer Proceedings in Mathematics & Statistics 85, 555-566 (2014). MSC: 78A46 78A50 78A45 PDF BibTeX XML Cite \textit{Y. G. Smirnov} et al., Springer Proc. Math. Stat. 85, 555--566 (2014; Zbl 1321.78009) Full Text: DOI OpenURL
Medvedik, M. Yu.; Smirnov, Yu. G.; Tsupak, A. A. Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies. (Russian, English) Zbl 1313.78028 Zh. Vychisl. Mat. Mat. Fiz. 54, No. 8, 1319- 1331 (2014); translation in Comput. Math. Math. Phys. 54, No. 8, 1280-1292 (2014). MSC: 78A45 PDF BibTeX XML Cite \textit{M. Yu. Medvedik} et al., Zh. Vychisl. Mat. Mat. Fiz. 54, No. 8, 1319- 1331 (2014; Zbl 1313.78028); translation in Comput. Math. Math. Phys. 54, No. 8, 1280--1292 (2014) Full Text: DOI Link OpenURL
Valovik, D. V.; Smirnov, Yu. G. On the problem of propagation of nonlinear coupled TE-TM waves in a layer. (Russian, English) Zbl 1313.35338 Zh. Vychisl. Mat. Mat. Fiz. 54, No. 3, 504-518 (2014); translation in Comput. Math. Math. Phys. 54, No. 3, 522-536 (2014). MSC: 35Q61 78A25 78A40 PDF BibTeX XML Cite \textit{D. V. Valovik} and \textit{Yu. G. Smirnov}, Zh. Vychisl. Mat. Mat. Fiz. 54, No. 3, 504--518 (2014; Zbl 1313.35338); translation in Comput. Math. Math. Phys. 54, No. 3, 522--536 (2014) Full Text: DOI Link OpenURL
Medvedik, M. Yu.; Smirnov, Yu. G. Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao-Wilton-Glisson method. (Russian, English) Zbl 1313.78006 Zh. Vychisl. Mat. Mat. Fiz. 54, No. 1, 105-113 (2014); translation in Comput. Math. Math. Phys. 54, No. 1, 114-122 (2014). MSC: 78A25 PDF BibTeX XML Cite \textit{M. Yu. Medvedik} and \textit{Yu. G. Smirnov}, Zh. Vychisl. Mat. Mat. Fiz. 54, No. 1, 105--113 (2014; Zbl 1313.78006); translation in Comput. Math. Math. Phys. 54, No. 1, 114--122 (2014) Full Text: DOI Link OpenURL
Shestopalov, Yury; Smirnov, Yury Eigenwaves in waveguides with dielectric inclusions: completeness. (English) Zbl 1301.78006 Appl. Anal. 93, No. 9, 1824-1845 (2014). MSC: 78A50 45E99 31B20 83C50 78A40 35P10 47A10 78M22 35Q60 PDF BibTeX XML Cite \textit{Y. Shestopalov} and \textit{Y. Smirnov}, Appl. Anal. 93, No. 9, 1824--1845 (2014; Zbl 1301.78006) Full Text: DOI arXiv Link OpenURL
Smirnov, Yury G.; Smol’kin, Eugenii Yu.; Valovik, Dmitry V. Nonlinear double-layer Bragg waveguide: analytical and numerical approaches to investigate waveguiding problem. (English) Zbl 1295.78014 Adv. Numer. Anal. 2014, Article ID 231498, 11 p. (2014). MSC: 78A50 78A60 45G10 78M25 PDF BibTeX XML Cite \textit{Y. G. Smirnov} et al., Adv. Numer. Anal. 2014, Article ID 231498, 11 p. (2014; Zbl 1295.78014) Full Text: DOI OpenURL
Shestopalov, Yury; Smirnov, Yury Eigenwaves in waveguides with dielectric inclusions: spectrum. (English) Zbl 1294.78013 Appl. Anal. 93, No. 2, 408-427 (2014). Reviewer: Vladimir Mityushev (Kraków) MSC: 78A50 35P10 35Q61 47A10 35J05 78A40 PDF BibTeX XML Cite \textit{Y. Shestopalov} and \textit{Y. Smirnov}, Appl. Anal. 93, No. 2, 408--427 (2014; Zbl 1294.78013) Full Text: DOI arXiv OpenURL
Valovik, D. V.; Smirnov, Yu. G.; Smol’kin, E. Yu. Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides. (Russian, English) Zbl 1299.78015 Zh. Vychisl. Mat. Mat. Fiz. 53, No. 7, 1150-1161 (2013); translation in Comput. Math. Math. Phys. 53, No. 7, 973-983 (2013). MSC: 78A50 45G05 PDF BibTeX XML Cite \textit{D. V. Valovik} et al., Zh. Vychisl. Mat. Mat. Fiz. 53, No. 7, 1150--1161 (2013; Zbl 1299.78015); translation in Comput. Math. Math. Phys. 53, No. 7, 973--983 (2013) Full Text: DOI OpenURL
Smirnov, Yury G.; Valovik, Dmitry V. Problem of nonlinear coupled electromagnetic TE-TE wave propagation. (English) Zbl 1296.78006 J. Math. Phys. 54, No. 8, 083502, 13 p. (2013). Reviewer: Aleksander Pankov (Baltimore) MSC: 78A40 35Q60 78A60 PDF BibTeX XML Cite \textit{Y. G. Smirnov} and \textit{D. V. Valovik}, J. Math. Phys. 54, No. 8, 083502, 13 p. (2013; Zbl 1296.78006) Full Text: DOI OpenURL
Smirnov, Yury G.; Valovik, Dmitry V. Coupled electromagnetic transverse-electric-transverse magnetic wave propagation in a cylindrical waveguide with Kerr nonlinearity. (English) Zbl 1282.78026 J. Math. Phys. 54, No. 4, 043506, 22 p. (2013). MSC: 78A50 78A60 78A40 PDF BibTeX XML Cite \textit{Y. G. Smirnov} and \textit{D. V. Valovik}, J. Math. Phys. 54, No. 4, 043506, 22 p. (2013; Zbl 1282.78026) Full Text: DOI OpenURL
Smirnov, Yury G.; Valovik, Dmitry V. On the problem of electromagnetic waves propagating along a nonlinear inhomogeneous cylindrical waveguide. (English) Zbl 1273.78010 ISRN Math. Phys. 2013, Article ID 184325, 7 p. (2013). MSC: 78A40 78A50 PDF BibTeX XML Cite \textit{Y. G. Smirnov} and \textit{D. V. Valovik}, ISRN Math. Phys. 2013, Article ID 184325, 7 p. (2013; Zbl 1273.78010) Full Text: DOI OpenURL
Smirnov, Yury G.; Valovik, Dmitry V. Coupled electromagnetic TE-TM wave propagation in a layer with Kerr nonlinearity. (English) Zbl 1278.78004 J. Math. Phys. 53, No. 12, 123530, 24 p. (2012). MSC: 78A60 78A40 35P30 PDF BibTeX XML Cite \textit{Y. G. Smirnov} and \textit{D. V. Valovik}, J. Math. Phys. 53, No. 12, 123530, 24 p. (2012; Zbl 1278.78004) Full Text: DOI OpenURL
Medvedik, M. Yu.; Smirnov, Yu. G. Iterative method for permittivity reconstruction for a non-homogeneous body placed into a rectangular waveguide. (Russian) Zbl 1274.78051 Zh. Vychisl. Mat. Mat. Fiz. 52, No. 12, 2228-2237 (2012). Reviewer: Andrei Zemskov (Moskva) MSC: 78A45 PDF BibTeX XML Cite \textit{M. Yu. Medvedik} and \textit{Yu. G. Smirnov}, Zh. Vychisl. Mat. Mat. Fiz. 52, No. 12, 2228--2237 (2012; Zbl 1274.78051) Full Text: MNR OpenURL
Smirnov, Yu G.; Valovik, D. V. Nonlinear effects of electromagnetic TM wave propagation in anisotropic layer with Kerr nonlinearity. (English) Zbl 1251.78011 Adv. Math. Phys. 2012, Article ID 609765, 21 p. (2012). MSC: 78A60 78A40 78A50 35P30 65L15 PDF BibTeX XML Cite \textit{Y. G. Smirnov} and \textit{D. V. Valovik}, Adv. Math. Phys. 2012, Article ID 609765, 21 p. (2012; Zbl 1251.78011) Full Text: DOI OpenURL
Shestopalov, Yury; Smirnov, Yury Determination of permittivity of an inhomogeneous dielectric body in a waveguide. (English) Zbl 1227.78014 Inverse Probl. 27, No. 9, Article ID 095010, 12 p. (2011). MSC: 78A50 45K05 45Q05 78M25 PDF BibTeX XML Cite \textit{Y. Shestopalov} and \textit{Y. Smirnov}, Inverse Probl. 27, No. 9, Article ID 095010, 12 p. (2011; Zbl 1227.78014) Full Text: DOI OpenURL
Mironov, D. A.; Smirnov, Yu. G. On the existence and uniqueness of solutions of the inverse boundary value problem for determining the permittivity of materials. (Russian, English) Zbl 1224.78031 Zh. Vychisl. Mat. Mat. Fiz. 50, No. 9, 1587-1597 (2010); translation in Comput. Math., Math. Phys. 50, No. 9, 1511-1521 (2010). MSC: 78A50 78A30 74G75 74G30 PDF BibTeX XML Cite \textit{D. A. Mironov} and \textit{Yu. G. Smirnov}, Zh. Vychisl. Mat. Mat. Fiz. 50, No. 9, 1587--1597 (2010; Zbl 1224.78031); translation in Comput. Math., Math. Phys. 50, No. 9, 1511--1521 (2010) Full Text: DOI OpenURL
Smirnov, Yury G.; Valovik, Dmitry V. Boundary eigenvalue problem for Maxwell equations in a nonlinear dielectric layer. (English) Zbl 1213.35217 Appl. Math., Irvine 1, No. 1, 29-36 (2010). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35J60 78A60 35J58 PDF BibTeX XML Cite \textit{Y. G. Smirnov} and \textit{D. V. Valovik}, Appl. Math., Irvine 1, No. 1, 29--36 (2010; Zbl 1213.35217) Full Text: DOI OpenURL
Shestopalov, Yury; Smirnov, Yury Existence and uniqueness of a solution to the inverse problem of the complex permittivity reconstruction of a dielectric body in a waveguide. (English) Zbl 1426.78025 Inverse Probl. 26, No. 10, Article ID 105002, 14 p. (2010). MSC: 78A50 78A46 35A02 PDF BibTeX XML Cite \textit{Y. Shestopalov} and \textit{Y. Smirnov}, Inverse Probl. 26, No. 10, Article ID 105002, 14 p. (2010; Zbl 1426.78025) Full Text: DOI OpenURL
Kobayashi, K.; Shestopalov, Yu.; Smirnov, Yu. Investigation of electromagnetic diffraction by a dielectric body in a waveguide using the method of volume singular integral equation. (English) Zbl 1221.78027 SIAM J. Appl. Math. 70, No. 3, 969-983 (2009). Reviewer: Nikolaos L. Tsitsas (Athens) MSC: 78A50 78A25 45E99 31B20 78A45 78M12 PDF BibTeX XML Cite \textit{K. Kobayashi} et al., SIAM J. Appl. Math. 70, No. 3, 969--983 (2009; Zbl 1221.78027) Full Text: DOI Link OpenURL
Valovik, D. V.; Smirnov, Yu. G. A nonlinear boundary eigenvalue problem for TM-polarized electromagnetic waves in a nonlinear layer. (English. Russian original) Zbl 1177.78050 Russ. Math. 52, No. 10, 60-63 (2008); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2008, No. 10, 70-74 (2008). MSC: 78A60 78A40 PDF BibTeX XML Cite \textit{D. V. Valovik} and \textit{Yu. G. Smirnov}, Russ. Math. 52, No. 10, 60--63 (2008; Zbl 1177.78050); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2008, No. 10, 70--74 (2008) Full Text: DOI OpenURL
Smirnov, Yu. G.; Tsupak, A. A. Existence and uniqueness of a solution of a singular volume integral equation in a diffraction problem. (English. Russian original) Zbl 1130.45002 Differ. Equ. 41, No. 9, 1253-1261 (2005); translation from Differ. Uravn. 41, No. 9, 1190-1197 (2005). MSC: 45E10 65R20 78A45 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{A. A. Tsupak}, Differ. Equ. 41, No. 9, 1253--1261 (2005; Zbl 1130.45002); translation from Differ. Uravn. 41, No. 9, 1190--1197 (2005) Full Text: DOI OpenURL
Kupriyanova, S. N.; Smirnov, Yu. G. The propagation of electromagnetic waves in cylindrical dielectric waveguides filled with a nonlinear medium. (Russian, English) Zbl 1114.78002 Zh. Vychisl. Mat. Mat. Fiz. 44, No. 10, 1850-1860 (2004); translation in Comput. Math. Math. Phys. 44, No. 10, 1762-1772 (2004). Reviewer: Evgenij Nechaev (Moskva) MSC: 78A25 78A50 35Q60 PDF BibTeX XML Cite \textit{S. N. Kupriyanova} and \textit{Yu. G. Smirnov}, Zh. Vychisl. Mat. Mat. Fiz. 44, No. 10, 1850--1860 (2004; Zbl 1114.78002); translation in Comput. Math. Math. Phys. 44, No. 10, 1762--1772 (2004) OpenURL
Smirnov, Yu. G.; Tsupak, A. A. Investigation of an electromagnetic problem of diffraction by a dielectric body using the method of a volume singular integral equation. (Russian, English) Zbl 1114.78005 Zh. Vychisl. Mat. Mat. Fiz. 44, No. 12, 2252-2267 (2004); translation in Comput. Math. Math. Phys. 44, No. 12, 2143-2158 (2004). Reviewer: Andrei Zemskov (Moskva) MSC: 78A45 49M15 35J15 45E05 78A50 PDF BibTeX XML Cite \textit{Yu. G. Smirnov} and \textit{A. A. Tsupak}, Zh. Vychisl. Mat. Mat. Fiz. 44, No. 12, 2252--2267 (2004; Zbl 1114.78005); translation in Comput. Math. Math. Phys. 44, No. 12, 2143--2158 (2004) OpenURL
Smirnov, Y.; Schürmann, H. W.; Shestopalov, Y. Integral equation approach for the propagation of TE-waves in a nonlinear dielectric cylindrical waveguide. (English) Zbl 1067.35122 J. Nonlinear Math. Phys. 11, No. 2, 256-268 (2004). MSC: 35Q60 78A40 PDF BibTeX XML Cite \textit{Y. Smirnov} et al., J. Nonlinear Math. Phys. 11, No. 2, 256--268 (2004; Zbl 1067.35122) Full Text: DOI OpenURL
Smirnov, Youri; Tsupak, Alexei Volume singular integral equations method for solving of diffraction problem of electromagnetic waves in rectangular resonator. (English) Zbl 1075.78524 Cohen, Gary C. (ed.) et al., Mathematical and numerical aspects of wave propagation, WAVES 2003. Proceedings of the sixth international conference on mathematical and numerical aspects of wave propagation, Jyväskylä, Finland, 30 June – 4 July 2003. Berlin: Springer (ISBN 3-540-40127-X/hbk). 274-279 (2003). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 78A45 65R20 PDF BibTeX XML Cite \textit{Y. Smirnov} and \textit{A. Tsupak}, in: Mathematical and numerical aspects of wave propagation, WAVES 2003. Proceedings of the sixth international conference on mathematical and numerical aspects of wave propagation, Jyväskylä, Finland, 30 June -- 4 July 2003. Berlin: Springer. 274--279 (2003; Zbl 1075.78524) OpenURL
Shestopalov, Yu. V.; Smirnov, Yu. G. The diffraction in a class of unbounded domains connected through a hole. (English) Zbl 1115.35310 Math. Methods Appl. Sci. 26, No. 16, 1363-1389 (2003). MSC: 35B40 35J05 35L05 35Q60 78A02 PDF BibTeX XML Cite \textit{Yu. V. Shestopalov} and \textit{Yu. G. Smirnov}, Math. Methods Appl. Sci. 26, No. 16, 1363--1389 (2003; Zbl 1115.35310) Full Text: DOI OpenURL
Smirnov, Yu. G. The method of operator pencils for propagation of electromagnetic waves in irregular waveguide structures. (English. Russian original) Zbl 1066.78506 Comput. Math. Model. 14, No. 1, 35-40 (2003); translation from Prikl. Mat. Inf. 9, 43-50 (2001). MSC: 78A50 PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Comput. Math. Model. 14, No. 1, 35--40 (2001; Zbl 1066.78506); translation from Prikl. Mat. Inf. 9, 43--50 (2001) Full Text: DOI OpenURL
Slavin, I. V.; Smirnov, Yu. G. Strong ellipticity of the hybrid formulation of the electromagnetic diffraction problem. (English. Russian original) Zbl 0984.78008 Comput. Math. Math. Phys. 40, No. 2, 273-286 (2000); translation from Zh. Vychisl. Mat. Mat. Fiz. 40, No. 2, 286-299 (2000). Reviewer: Alexey Tret’yakov (Siedlce) MSC: 78A45 PDF BibTeX XML Cite \textit{I. V. Slavin} and \textit{Yu. G. Smirnov}, Comput. Math. Math. Phys. 40, No. 2, 273--286 (2000; Zbl 0984.78008); translation from Zh. Vychisl. Mat. Mat. Fiz. 40, No. 2, 286--299 (2000) OpenURL
Ivakhnenko, V. I.; Smirnov, Yu. G.; Tyrtyshnikov, E. E. The electric field integral equation: theory and algorithms. (English) Zbl 0926.65123 El Dabaghi, F. (ed.) et al., Approximations and numerical methods for the solution of Maxwell’s equations. Proceedings of the 3rd international conference held at the University of Oxford, GB, April 1995. Oxford: Clarendon Press. Inst. Math. Appl. Conf. Ser., New Ser. 65, 251-262 (1998). MSC: 65N38 35Q60 78A45 78M15 PDF BibTeX XML Cite \textit{V. I. Ivakhnenko} et al., in: Approximations and numerical methods for the solution of Maxwell's equations. Proceedings of the 3rd international conference held at the University of Oxford, GB, April 1995. Oxford: Clarendon Press. 251--262 (1998; Zbl 0926.65123) OpenURL
Smirnov, Yu. G. The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape. (English. Russian original) Zbl 0831.45009 Comput. Math. Math. Phys. 34, No. 10, 1265-1276 (1994); translation from Zh. Vychisl. Mat. Mat. Fiz. 34, No. 10, 1461-1475 (1994). MSC: 45K05 78A45 PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Comput. Math. Math. Phys. 34, No. 10, 1265--1276 (1994; Zbl 0831.45009); translation from Zh. Vychisl. Mat. Mat. Fiz. 34, No. 10, 1461--1475 (1994) OpenURL
Smirnov, Yu. G. On the solvability of vector problems of diffraction in domains connected through an opening in a screen. (English. Russian original) Zbl 0820.35156 Comput. Math. Math. Phys. 33, No. 9, 1263-1273 (1993); translation from Zh. Vychisl. Mat. Mat. Fiz. 33, No. 9, 1427-1440 (1993). MSC: 35S05 35Q60 78A50 PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Comput. Math. Math. Phys. 33, No. 9, 1427--1440 (1993; Zbl 0820.35156); translation from Zh. Vychisl. Mat. Mat. Fiz. 33, No. 9, 1427--1440 (1993) OpenURL
Smirnov, Yu. G. Fredholmness of systems of pseudodifferential equations in the problem of diffraction on a bounded screen. (English. Russian original) Zbl 0788.35157 Differ. Equations 28, No. 1, 130-136 (1992); translation from Differ. Uravn. 28, No. 1, 136-143 (1992). MSC: 35S15 35P20 78A45 PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Differ. Equations 28, No. 1, 130--136 (1992; Zbl 0788.35157); translation from Differ. Uravn. 28, No. 1, 136--143 (1992) OpenURL
Smirnov, Yu. G. On the Fredholm property of a system of pseudodifferential equations in a diffraction problem on a bounded screen. (Russian) Zbl 0769.35077 Differ. Uravn. 28, No. 1, 136-143 (1992). Reviewer: P.Popivanov (Sofia) MSC: 35S15 35P20 78A45 PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Differ. Uravn. 28, No. 1, 136--143 (1992; Zbl 0769.35077) OpenURL
Il’inskij, A. S.; Smirnov, Yu. G. Variational method for the characteristic mode problem of a partially filled waveguide with an irregular boundary. (English. Russian original) Zbl 0797.65082 Comput. Math. Model. 2, No. 1, 85-91 (1991); translation from Tikhonov, A. N. (ed.) et al. Numerical methods for the solution of inverse problems of mathematical physics. Work collection, 127-137 (1988). MSC: 65N25 35P10 35J05 78A50 PDF BibTeX XML Cite \textit{A. S. Il'inskij} and \textit{Yu. G. Smirnov}, Comput. Math. Model. 2, No. 1, 85--91 (1988; Zbl 0797.65082); translation from Tikhonov, A. N. (ed.) et al. Numerical methods for the solution of inverse problems of mathematical physics. Work collection, 127--137 (1988) Full Text: DOI OpenURL